
Epigenetics and ChIP-seq

CSAMA 2015, Brixen
16. 06. 2015.

Aleksandra Pekowska
aleksandra.pekowska@embl.de

Statistics and Computing in Genome Data Science

CSAMA 2015

mailto:aleksandra.pekowska@embl.de
mailto:aleksandra.pekowska@embl.de


Outline of the lecture

1. Epigenetics - fundamental concepts
2. The ChIP-seq method
3. What kind of information can we obtain from ChIP-seq?
4. Study design
5. ChIP-seq analysis workflow:

a. Preprocessing
b. Quality controls
c. Isolation of enriched regions
d. Analysis of enriched regions
e. Visualization
f.  Average profiles
g. Comparative analysis of enriched regions

Purpose: introduce basic steps and key considerations in ChIP-seq analysis



Epigenetics - inheritance, but not as we know it

Non-genic memory of function transmitted from generation to 
generation (A. Bird)

Fig. 3.1 Waddington’s view on the epigenetic landscape shaping cell’s developmental
choices. At the beginning of the developmental process, cell has equal opportunities to
differentiate to any mature cell lineage (situation at the top of the cartoon). During the set up
of cellular identity, undertaken choices (represented here by valleys) restrain cell plasticity and
result in the establishment of specific identity. According to the current view, chromatin
modifications along with the action of TFs constitute the key determinants of lineage choices
shaping the epigenetic landscape and insuring maintenance of developmental choices
(Adapted from Hemberger 2009)

TFs  +     Chromatin
Adapted from Conrad Hal Waddington (1942)

Factors which are analysed:

- DNA methylation
- nucleosome occupancy
- histone modifications
- transcription factors
- RNA-polymerases
- chromatin modifying enzymes



Adapted from Massie 2008, Ran 2003, Park 2009.

Chromatin Immunoprecipitation 

Fig. 2.8 High throughput techniques used to map chromatin modifications. Cells are fixed
with formaldehyde which results in covalent linking of DNA and proteins found in its closest
vicinity. Chromatin extract is next sheared by sonication. DNA fragments associated with a factor
of interest (TF, polII of specifically modified histone) are immuno-enriched using high quality
antibodies. The resulting material can be analysed by qPCR or by high throughput approaches
such as microarrays (ChIP-chip, left-hand side of the bottom panel) or new generation sequencing
technologies (ChIP-Seq, right-hand side of the bottom panel). Adapted from Massie 2008, Ran
2003, Park 2009.
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What kind of information can we obtain from the 
ChIP-seq experiments ?

Resource

High-Resolution Profiling of Histone
Methylations in the Human Genome
Artem Barski,1,3 Suresh Cuddapah,1,3 Kairong Cui,1,3 Tae-Young Roh,1,3 Dustin E. Schones,1,3 Zhibin Wang,1,3

Gang Wei,1,3 Iouri Chepelev,2 and Keji Zhao1,*
1Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
2Department of Human Genetics, Gonda Neuroscience and Genetics Research Center, University of California, Los Angeles,
Los Angeles, CA 90095, USA
3These authors contributed equally to this work and are listed alphabetically.
*Correspondence: zhaok@nhlbi.nih.gov
DOI 10.1016/j.cell.2007.05.009

SUMMARY

Histone modifications are implicated in influ-
encing gene expression. We have generated
high-resolution maps for the genome-wide
distribution of 20 histone lysine and arginine
methylations as well as histone variant H2A.Z,
RNA polymerase II, and the insulator binding
protein CTCF across the human genome using
the Solexa 1G sequencing technology. Typical
patterns of histone methylations exhibited
at promoters, insulators, enhancers, and tran-
scribed regions are identified. The mono-
methylations of H3K27, H3K9, H4K20, H3K79,
and H2BK5 are all linked to gene activation,
whereas trimethylations of H3K27, H3K9, and
H3K79 are linked to repression. H2A.Z associ-
ates with functional regulatory elements, and
CTCF marks boundaries of histone methylation
domains. Chromosome banding patterns are
correlated with unique patterns of histonemod-
ifications. Chromosome breakpoints detected
in T cell cancers frequently reside in chromatin
regions associated with H3K4 methylations.
Our data provide new insights into the function
of histone methylation and chromatin organiza-
tion in genome function.

INTRODUCTION

Eukaryotic DNA is packaged into a chromatin structure
consisting of repeating nucleosomes formed by wrapping
146 base pairs of DNA around an octamer of four core his-
tones (H2A, H2B, H3, and H4). The histones, particularly
their N-terminal tails, are subject to a large number of
posttranslational modifications (Kouzarides, 2007). His-
tone modifications are implicated in influencing gene ex-
pression and genome function by establishing global
chromatin environments and orchestrating DNA-based

biological processes. Among the various modifications,
histone methylations at lysine and arginine residues are
relatively stable and are therefore considered potential
marks for carrying the epigenetic information that is stable
through cell divisions. Indeed, enzymes that catalyze the
methylation reaction have been implicated in playing crit-
ical roles in development and pathological processes.

Remarkable progress has been made during the past
few years in the characterization of histone modifications
on a genome-wide scale. The main driving force has
been the development and improvement of the ‘‘ChIP-
on-chip’’ technique by combining chromatin immunopre-
cipitation (ChIP) and DNA-microarray analysis (chip). With
almost complete coverage of the yeast genome on DNA
microarrays, its histone modification patterns have been
extensively studied. The general picture emerging from
these studies is that promoter regions of active genes
have reduced nucleosome occupancy and elevated his-
tone acetylation (Bernstein et al., 2002, 2004; Lee et al.,
2004; Liu et al., 2005; Pokholok et al., 2005; Sekinger
et al., 2005; Yuan et al., 2005). High levels of H3K4me1,
H3K4me2, and H3K4me3 are detected surrounding tran-
scription start sites (TSSs), whereas H3K36me3 peaks
near the 30 end of genes.

Significant progress has also been made in characteriz-
ing global levels of histone modifications in mammals.
Several large-scale studies have revealed interesting in-
sights into the complex relationship between gene ex-
pression and histone modifications. Generally, high levels
of histone acetylation and H3K4 methylation are detected
in promoter regions of active genes (Bernstein et al., 2005;
Kim et al., 2005; Roh et al., 2005, 2006), whereas elevated
levels of H3K27 methylation correlates with gene repres-
sion (Boyer et al., 2006; Lee et al., 2006; Roh et al.,
2006). In addition to the promoter regions, thesemodifica-
tions are also detected in intergenic regions as both
sharply localized peaks and wide-spread domains. The
H3 acetylation and H3K4me1 signals outside of promoter
regions have been correlated with functional enhancers in
various cell types (Heintzman et al., 2007; Roh et al., 2005;
Roh et al., 2007). The apparently opposite modifications,
H3K4me3 and H3K27me3, colocalize in regions termed
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and 2D). H3K4me3 positively correlated with gene ex-
pression. A significant dip in the signal was observed be-
tween!200 to +50 for H3K4me3, which correlatedwith the
nucleosome loss in active genes. A series of peaks of
H4K4me3 signals at +50, +210, and +360 were detected,
suggesting similar nucleosome positioning relative to TSS
in active genes. Similar to Pol II binding, H3K4me3 islands
were detected in 59% of silent promoters (Figure S1).

While the levels of H3K4me1 and H3K4me2 positively
correlated with transcriptional levels, the signals down-
stream of TSSs were higher in the intermediately active

group of genes than in the highly active genes. This might
be caused by the high levels of H3K4me3 in the highly ac-
tive group, since the three methylation states compete
for the single lysine. Two major peaks were detected for
each modification: !900 and +1000 for H3K4me1, !500
and +700 for H3K4me2, and !300 and +100 for
H3K4me3. The signals are progressively more localized
to the vicinity of TSSs as the modification moves from
mono- to di- to trimethylation, which is consistent with
the results from human HeLa cells (Heintzman et al.,
2007).

Figure 2. Histone Methylation near Transcription Start Sites
(A)–(L) Profiles of the histone methylation indicated above each panel across the TSS for highly active, two stages of intermediately active and silent

genes are shown. Twelve thousand human genes were separated into twelve groups of one thousand genes according to their expression levels (see

Experimental Procedures).
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Figure 5. Epigenetic Modifications at Insulators and Enhancers
(A) CTCF binding marks the boundaries of active and inactive domains. H3K4me3, H3K27me1, H3K27me3, and CTCF binding were shown at the

PPP5C locus.
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series of high-salt washes, and bound proteins were then eluted and
examined by silver stain and western blot analysis. The results show
that cohesin and Nipbl co-purified with mediator throughout this
protocol (Fig. 3c). Additional evidence for a mediator–cohesin inter-
action came from an unbiased, multidimensional protein identification
technology (MudPIT)-based screen for mediator-associated factors in
HeLa cells32. Collectively, these results indicate that mediator, cohesin
and Nipbl physically interact and suggest that this interaction
accounts for their co-occupancy at active promoters in vivo.

Mediator and cohesin predict DNA looping
Our evidence shows that mediator, cohesin and Nipbl interact and co-
occupy the enhancer and core promoter regions of a set of active genes
in ES cells, indicating that they contribute to DNA looping between
the enhancer and core promoter of these genes. We selected four
different loci, Nanog, Phc1, Oct4 and Lefty1, to test enhancer–
promoter interaction frequencies in ES cells and in murine embryonic
fibroblasts (MEFs). These genes were selected because mediator and
cohesin occupy their enhancer and core promoter regions in ES cells,
where they have a positive role in their transcription, whereas medi-
ator and cohesin are not present at these genes in MEFs, where these
genes are transcriptionally silent.

We used 3C technology33 to determine whether a looping event
could be detected between the enhancer and promoter of Nanog,
Phc1, Oct4 and Lefty1 loci in both ES cells and MEFs (Fig. 4 and
Supplementary Fig. 7). For all loci tested we observed an increased
interaction frequency between the core promoter and the enhancer in
ES cells, indicating the presence of a DNA loop. Importantly, this

interaction was not observed in MEFs where Nanog, Phc1, Oct4 and
Lefty1 are silent and not occupied by mediator and cohesin.
Furthermore, a reduction in Smc1a or Med12 expression levels
resulted in a decreased interaction frequency between the core pro-
moter and enhancer of Nanog (Supplementary Fig. 8). These 3C
results are consistent with a model where the mediator–cohesin–
Nipbl complex promotes cell-type-specific gene activation through
enhancer–promoter DNA looping.

Cell-type specificity
The observation that mediator, cohesin and Nipbl occupied the pro-
moters of ES-cell-specific genes such as those encoding the pluripotency
regulators Oct4 and Nanog (Fig. 2a) led us to ask whether mediator and
cohesin tend to occupy cell-type-specific genes. Indeed, mediator and
cohesin were found to co-occupy very different sets of promoters in ES
cells and MEFs (Fig. 5a and Supplementary Tables 4–6). In contrast,
many of the sites occupied by cohesin and CTCF in ES cells were also
co-occupied by these proteins in MEFs (Fig. 5b and Supplementary
Tables 4–6). The levels of mediator were found to be considerably
higher in ES cells than in MEFs (Fig. 5c), accounting for the differences
in the number of sites co-occupied by mediator and cohesin in the two
cell types. These observations indicate that mediator and cohesin have
especially important roles in cell-type-specific gene expression and
thus, in cell-type-specific chromosome structure.

Discussion
Evidence for specific DNA loop formation during transcription ini-
tiation was first described in bacteria and bacteriophage gene
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Figure 2 | Genome-wide occupancy of mediator and cohesin in ES cells.
a, Binding profiles for ES cell transcription factors (Oct4, Nanog and Sox2),
mediator (Med1 and Med12), cohesin (Smc1a, Smc3 and Nipbl), CTCF and
components of the transcription apparatus (Pol2 and TBP) at the Oct4 and
Nanog loci. ChIP-Seq data are shown in reads per million with the y axis floor
set to 0.5 reads per million. Oct4/Sox2, CTCF and TBP (TATA box) sequence
motifs are indicated. b, Venn diagram showing the overlap of high-confidence
(P , 1029) cohesin (Smc1a) occupied sites with those bound by CTCF,
mediator (Med12) and Nipbl. c, Region map showing that Smc1a, Nipbl and

Med12 co-occupied sites generally occur in close proximity to Pol2 and in the
absence of CTCF. For each Smc1a occupied region, the occupancy of Med12,
Nipbl, Pol2 and CTCF is indicated within a 10-kb window centred on the
Smc1a region. d, Heat map indicating that regions co-occupied by Smc1a,
Med12 and Nipbl, which are associated with active genes, exhibit similar
expression changes with knockdown of Smc1a, Med12 or Nipbl. Log2

expression data were ordered based on the Smc1a knockdown data and are
shown for all Smc1a, Med12 and Nipbl co-occupied regions that could be
mapped to a gene, as described in Supplementary Information.
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et al., 2007; Kaczynski et al., 2003; Kim et al., 2007; Pettersson
et al., 1996; Zeller et al., 2006). Hence, we showed that sequence
motifs can be identified from the in vivo-bound sites.

A Subset of Multiple Transcription-Factor-Binding Loci
as ES-Cell Enhanceosomes
Upon close examination of the binding profiles from these 13
TFs, we found that a subset of binding sites was bound by
many of these TFs. To investigate their biological relevance,
we first determined the significance of such enrichments of
TFBSs (see Supplemental Experimental Procedures). Peak sites
within 100 bp were iteratively clustered to define multiple tran-
scription factor-binding loci (MTL) (see Table S8). The number

Figure 1. Genome-Wide Mapping of 13 Factors
in ES Cells by Using ChIP-seq Technology
TFBS profiles for the sequence-specific transcription

factors and mock ChIP control at the Pou5f1 and

Nanog gene loci are shown.

of these MTL, plotted as a function of the
number of different TFs in the MTL, is shown
in Figure 3A. Loci bound by 4 or more TFs are
highly significant (p < 0.001, Figure 3A), and
there is a total of 3583 such MTL. Of these,
1440 loci (40.2%) were found in the inter-
genic regions, and the remaining loci were
spread between promoter regions (1334
loci, 37.2%) and within gene regions (809
loci, 22.6%). Less than 20% of the clusters
with 7 or more TFs are found at promoter re-
gions (yellow columns, Figure 3B), compared
with 40% of the clusters that have fewer than
5 TFs. Hence, the co-occurrence of TFBSs
within the MTL is not mainly due to their oc-
currence at promoters.

To further dissect the composition of the
MTL, we examined the co-occupancy of dif-
ferent factors found in the 3583 MTL. Among
the 13 TFs, Nanog, Sox2, Oct4, Smad1, and
STAT3 (blue box, Figure 4A) tend to co-occur
quite often, as do members of a second, dis-
tinct group comprised of n-Myc, c-Myc,
E2f1, and Zfx (green box, Figure 4A). In addi-
tion to these two high-level groupings of TFs,
we find it useful to define four groups of MTL
based on the presence or absence of binding
sites of (i) Oct4, Sox2, or Nanog and (ii)
c-Myc or n-Myc. The Nanog-Oct4-Sox2
clusters (binding observed for Nanog, Oct4,
or Sox2, but not for n-Myc or c-Myc) consti-
tute 43.4% of the 3583 MTL (orange sector,
Figure 4B). The Myc-specific clusters (n-
Myc or c-Myc, but not Nanog, Oct4, or
Sox2) make up 32.9% of the MTL (light-
blue sector, Figure 4B).

Consistent with the pairwise co-occurrence shown in
Figure 4A, 87.4% of Smad1- and 56.8% of STAT3-binding sites
within MTL were associated with the Nanog-Oct4-Sox2-specific
MTL (orange sector, Figure 4C). This indicates that Smad1 and
STAT3 share many common target sites with Nanog, Oct4,
and Sox2 and reflects a point of convergence of the two key sig-
naling pathways (via Smad1 and STAT3) with the core circuitry
defined by Nanog, Oct4, and Sox2 (Boyer et al., 2005). This is
consistent with a previous study showing the link between
Nanog and the LIF pathway (Chambers et al., 2003). A total of
56.9% of Esrrb- and 41.9% of Klf4-binding sites within MTL
were found in the Nanog-Oct4-Sox2-specific MTL. Indeed, Esrrb
has been shown to reside in the same complex as Nanog (Wang

1108 Cell 133, 1106–1117, June 13, 2008 ª2008 Elsevier Inc.

et al., 2006). In contrast, the co-occurrence of Zfx, CTCF, and
E2f1 was skewed toward the Myc-specific cluster (light-blue
sector, Figure 4C).

As the majority of the Nanog-Oct4-Sox2-specific MTL are
found outside of promoter regions (91.2%), we assayed genomic
sequences from this MTL cluster type for enhancer activity. A
total of 25 genomic fragments from the Nanog-Oct4-Sox2 clus-
ter and 8 genomic fragments from the Myc cluster were cloned
downstream of a luciferase reporter. The genomic fragment
was placed 2 kb away from the minimal Pou5f1 promoter used
to drive the luciferase gene. These constructs were transfected
into ES cells and 293T cells, and luciferase activity was mea-
sured. Remarkably, all 25 constructs with genomic fragments
spanning Nanog-Oct4-Sox2 clusters showed robust ES-cell-
specific enhancer activity (Figure 4D). A total of 21 of the con-
structs were even more active than a Nanog enhancer positive
control. In contrast, the control constructs with genomic frag-
ments from the Myc cluster were either not active or showed
very weak ES-cell-specific enhancer activity.

Combinatorial binding of TFs to enhancers can impart tran-
scriptional synergy (Struhl, 2001). To address the relationships
between Oct4, Smad1, and STAT3, we perturbed the binding
of these factors through RNAi or growth factor withdrawal. De-
pletion of Oct4 led to a reduction in Smad1 and STAT3 binding
(Figures 4E and 4F). The alteration of Smad1 and STAT3 binding
occurs specifically on Oct4, Smad1, and STAT3 co-bound sites
and was not due to a reduction in Smad1 and STAT3 levels (data
not shown). We also performed the reciprocal experiments of
withdrawing LIF or BMP4 from the culture media. LIF withdrawal
reduced STAT3 binding to its targets, whereas BMP4 withdrawal
reduced Smad1 binding to its targets (Figures S3L and S3M).
Perturbation of the two signaling pathways, however, did not
affect the binding of Oct4 (Figure 4G). This indicates that Oct4
is pivotal in stabilizing the nucleoprotein complex and estab-

Figure 2. Identification of Enriched Motifs by Using
a De Novo Approach
Matrices predicted by the de novo motif-discovery algorithm

Weeder.

lishes a hierarchy of regulatory interactions be-
tween Oct4, STAT3, and Smad1. The mechanism
for Oct4-dependent STAT3 and Smad1 binding is
not clear. It is possible that Oct4 may interact with
STAT3 or Smad1 to facilitate their interactions with
chromatin.

In summary, through the global binding sites of
TF profiling, we uncovered over 3000 genomic
regions densely bound by TFs. The Nanog-Oct4-
Sox2 cluster exhibits features of enhanceosomes
by enhancing transcription from a distance and
shows extensive co-occupancy with Smad1 and
STAT3. Importantly, we showed that Oct4 is re-
quired for the binding of Smad1 and STAT3,

suggesting that Oct4 plays a pivotal role in stabilizing the TF
complex.

p300 Is Recruited to the Nanog-Oct4-Sox2 Cluster
To further assign functionality to the MTL, we determined the
locations of transcriptional coactivator p300 by using ChIP-seq
(Figures S6 and S7; Table S11). p300 is a histone acetyltransfer-
ase commonly found at enhancer regions (Heintzman et al.,
2007; Ogryzko et al., 1996). Genome-wide mapping of a chroma-
tin regulator like p300 has the potential to reveal the DNA-binding
factor(s) responsible for recruiting the regulator to specific sites
in the genome (Birney et al., 2007). We also profiled the locations
of another chromatin regulator, Suz12, to serve as a control (Fig-
ures S6 and S7; Table S11).

Strikingly, p300 was found to co-occur with the Nanog-Oct4-
Sox2 cluster type (Figure 5A). Most p300-binding sites are asso-
ciated with 3–6 other TFs, up to as many as 9 in one case
(Figure 5B). The composition of these p300-containing clusters
is highly diverse, but, typically, they include one or more of the
factors Nanog, Oct4, or Sox2, followed, at lower probability, by
Smad1, Esrrb, Klf4, Tcfcp2l1, and STAT3 (Figure 5B). In contrast
to p300, Suz12 did not show strong association with any of the
13 TFs (data not shown). Using the de novo motif-discovery al-
gorithm Weeder, we were able to uncover an enriched motif
from p300-enriched sequences that resembles the sox-oct
composite element (Figure 5C). The association of p300 with
Nanog-Oct4-Sox2 clusters was validated for 12 sites by using
ChIP-qPCR. As controls, 12 Myc-bound MTL that lack p300 as
determined by the ChIP-seq assay also lack p300 as determined
by ChIP-qPCR. (Figure S8). These data suggest that Oct4, Sox2,
and Nanog are recruiting p300 to the genomic sites. To test this
hypothesis, we depleted Oct4, Sox2, or Nanog by RNAi and
checked for p300 binding. Our ChIP result showed that p300
binding was reduced by Oct4, Sox2, or Nanog depletion

Cell 133, 1106–1117, June 13, 2008 ª2008 Elsevier Inc. 1109
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To summarize - the most frequent tasks are: 

1. Visualization along the genome
2. Peak finding and analysis (localization, co-
occurrences, motifs) 
3. Heatmaps of signal and average profiles at 
various genomic loci



But before we start the analysis...
ChIP-seq: considerations for study design

• Distribution of modification - number of sequenced reads
• Paired vs. single end sequencing - fragment length estimation
• IgG control (pros and cons)
• Input control
• Biological replication!



ChIP-seq profiles

- peaks vs. large domains
- signal to noise ratio
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quencing depth, and for point source TFs,
our current target is NRF $0.8 for 10
million (M) uniquely mapped reads (Box
2). We expect that, as sequencing tech-
nology improves and read numbers in the
hundreds of millions per lane become fea-
sible, even complex libraries from point-
source factor libraries may be sequenced at
depths greater than necessary. To maxi-
mize information that can be obtained for
each DNA-sequencing run and to prevent
oversequencing, barcoding and pooling
strategies can be used (Lefebvre et al.
2010).

Control sample

An appropriate control data set is critical
for analysis of any ChIP-seq experiment
because DNA breakage during sonication
is not uniform. In particular, some re-
gions of open chromatin are preferen-
tially represented in the sonicated sam-
ple (Auerbach et al. 2009). There are also
platform-specific sequencing efficiency
biases that contribute to nonuniformity
(Dohm et al. 2008). There are two basic
methods to produce control DNA sam-
ples, each of which mitigates the effects
of these issues on binding-site identifica-
tion: (1) DNA is isolated from cells that
have been cross-linked and fragmented
under the same conditions as the immu-
noprecipitated DNA (‘‘Input’’ DNA); and
(2) a ‘‘mock’’ ChIP reaction is performed
using a control antibody that reacts
with an irrelevant, non-nuclear antigen
(‘‘IgG’’ control). For both types of con-
trols, ENCODE groups sequence to a
depth at least equal to, and preferably
larger than, that of the ChIP sample.
While the IgG control mimics a ChIP
experiment more closely than does an
‘‘input’’ control, it is important that IgG
control immunoprecipitations recover
enough DNA to build a library of suffi-
ciently high complexity to that of the ex-
perimental samples; otherwise, binding-
site identifications made using this control
can be significantly biased.

Regardless of the type of control
used, ENCODE and modENCODE groups
perform a separate control experiment
for each cell line, developmental stage,
and different culture condition/treatment
because of known and unknown differ-
ences in ploidy, genotype, and epigenetic
features that affect chromatin prepara-
tion. To serve as a valid control, we use
identical protocols to build ChIP and
control sequencing libraries (i.e., the same
as the number of PCR amplification cycles,

Figure 3. Peak counts depend on sequencing depth. (A) Number of peaks called with Peak-seq
(0.01% FDR cut-off) for 11 ENCODE ChIP-seq data sets. (B) Called peak numbers for 11 ChIP-seq data
sets as a function of the number of uniquely mapped reads used for peak calling. (Inset) Called peak
data for the MAFK data set from HepG2 cells, currently the most deeply sequenced ENCODE ChIP-
seq data set (displayed separately due to the significantly larger number of reads relative to the other
data sets). Data sets are indicated by cell line and transcription factor (e.g., cell line HepG2, tran-
scription factor MAFK). (C ) Fold-enrichment for newly called peaks as a function of sequencing
depth. For each incremental addition of 2.5 million uniquely mapped reads, the median fold-en-
richment for newly called peaks as compared with an IgG control data set sequenced to identical
depth is plotted.

Landt et al.

1820 Genome Research
www.genome.org
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ChIP-seq: sequencing depth matters

Landt 2012



ENCODE consortium guidelines

For mammalian genomes such as human and mouse:

1. > 20M aligned reads for broad marks
2. > 10M aligned reads for TFs



Paired vs. single end sequencing

- paired end sequencing is always useful (nucleosome positioning) 
however not absolutely necessary

TF

TF

TFTF

TF

Sonication

densities, shifting the strands relative to each other by increasing
distance. All of the examined data sets exhibit a clear peak in the
strand cross-correlation profile, corresponding to the predominant
size of the protected region (Fig. 1d and Supplementary Fig. 1
online). The magnitude of the peak reflects the fraction of tags in
the data set that appears in accordance with the expected binding tag
pattern. In an ideal case, when all of the sequenced tags participate in
such binding patterns, the correlation magnitude reaches a maximum
value. Conversely, the magnitude decreases as tag positions are
randomized (Supplementary Fig. 2 online).

Using variable-quality tag alignments
Although some tags align perfectly with the reference genome, others
align only partially, with gaps or mismatches. Poorly aligned tags may
result from experimental problems such as sample contamination,
correspond to polymorphic or unassembled regions of the genome,
or reflect sequencing errors. For the Solexa platform, the sequencing
errors are more abundant toward the 3¢ ends of the sequenced
fragments, frequently resulting in partial alignments that include
only the portions of the tags near the 5¢ ends. We estimate that this
increase in mismatch frequencies towards 3¢ termini accounts for
41–75% of all observed mismatches in the examined data sets
(Supplementary Fig. 3 online). As it is not unusual to have
450% of the total tags result in only partial
alignment, inclusion of tags that are par-
tially aligned but still informative is impor-
tant for optimizing use of any data set11,12.
We therefore chose to use the length of the
match and the number of nucleotides cov-
ered by mismatches and gaps to classify the
quality of tag alignment (Table 1 and Sup-
plementary Table 2 online).

Given a classification of tags by quality of
alignment, we propose to use the strand
cross-correlation profile to determine
whether a particular class of tags should be

included in further analysis. A set of tags informative about the
binding positions should increase cross-correlation magnitude,
whereas a randomly mapped set of tags should decrease it (Supple-
mentary Fig. 2). Using this approach for the NRSF data set (Fig. 2),
we found that alignments with matches spanning at least 18 bp and
zero mismatches improved the cross-correlation profile. However,
only full-length (25 bp) matches should be considered for tags with
two mismatches. Using this criterion to accept tags increased their
number over the set of perfectly aligned tags by 27% for the NRSF
data set, 30% for the CTCF data set and 36% for the STAT1 data set
(Supplementary Fig. 4 online). The incorporation of these tags
improved sensitivity and accuracy of the identified binding positions
(Supplementary Fig. 5 online).

Controlling for background tag distribution
The statistical significance of the tag clustering observed for a putative
protein binding position depends on the expected background pat-
tern. The simplest model assumes that the background tag density is
distributed uniformly along the genome and independently between
the strands11. In addition to the NRSF ChIP sample, Johnson et al.2

have sequenced a control input sample, providing an experimental
assessment of the background tag distribution. We found that the
background tag distribution exhibits a degree of clustering that is
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Figure 1 Protein-binding detection from ChIP-seq data. (a) Main steps of the proposed ChIP-seq processing pipeline. (b) Schematic illustration of ChIP-seq
measurements. DNA is fragmented or digested, and fragments cross-linked to the protein of interest are selected with immunoprecipitation. The 5¢ ends
(squares) of the selected fragments are sequenced, typically forming groups of positive- and negative-strand tags on the two sides of the protected region.
The dashed red line illustrates a fragment generated from a long cross-link that may account for the tag patterns observed in CTCF and STAT1 data sets.
(c) Tag distribution around a stable NRSF binding position. Vertical lines show the number of tags (right axis) whose 5¢ position maps to a given location on
positive (red) or negative (blue) strands. Positive and negative values on the y-axis are used to illustrate tags mapping to positive and negative strands,
respectively. The solid curves show tag density for each strand (left axis, based on Gaussian kernel with s ¼ 15 bp). (d) Strand cross-correlation for the
NRSF data. The y-axis shows Pearson linear correlation coefficient between genome-wide profiles of tag density of positive and negative strands, shifted
relative to each other by a distance specified on the x-axis. The peak position (red vertical line) indicates a typical distance separating positive- and
negative-strand peaks associated with the stable binding positions.

Table 1 Classification of tag alignments based on the length of the match and the number
of mismatches

16 17 18 19 20 21 22 23 24 25

0 63,388 50,613 34,707 21,230 16,775 14,453 11,068 6,556 54,455 1,234,829

1 16,625 25,991 24,715 23,431 17,540 12,705 31,416 192,975

2 295 3436 7,939 6,042 6,379 16,495

The table gives the number of NRSF data set tags whose best alignment falls within each class, as defined by the
length of alignment (columns) and the number of mismatches (rows). The tags from the NRSF data set were aligned
using BLAT. The number of mismatches includes the number of nucleotides covered by gaps.
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The estimation of the length of the ChIP fragments

•Binning - visualization and signal distribution analysis
•Quality control check
•Peak finding

densities, shifting the strands relative to each other by increasing
distance. All of the examined data sets exhibit a clear peak in the
strand cross-correlation profile, corresponding to the predominant
size of the protected region (Fig. 1d and Supplementary Fig. 1
online). The magnitude of the peak reflects the fraction of tags in
the data set that appears in accordance with the expected binding tag
pattern. In an ideal case, when all of the sequenced tags participate in
such binding patterns, the correlation magnitude reaches a maximum
value. Conversely, the magnitude decreases as tag positions are
randomized (Supplementary Fig. 2 online).

Using variable-quality tag alignments
Although some tags align perfectly with the reference genome, others
align only partially, with gaps or mismatches. Poorly aligned tags may
result from experimental problems such as sample contamination,
correspond to polymorphic or unassembled regions of the genome,
or reflect sequencing errors. For the Solexa platform, the sequencing
errors are more abundant toward the 3¢ ends of the sequenced
fragments, frequently resulting in partial alignments that include
only the portions of the tags near the 5¢ ends. We estimate that this
increase in mismatch frequencies towards 3¢ termini accounts for
41–75% of all observed mismatches in the examined data sets
(Supplementary Fig. 3 online). As it is not unusual to have
450% of the total tags result in only partial
alignment, inclusion of tags that are par-
tially aligned but still informative is impor-
tant for optimizing use of any data set11,12.
We therefore chose to use the length of the
match and the number of nucleotides cov-
ered by mismatches and gaps to classify the
quality of tag alignment (Table 1 and Sup-
plementary Table 2 online).

Given a classification of tags by quality of
alignment, we propose to use the strand
cross-correlation profile to determine
whether a particular class of tags should be

included in further analysis. A set of tags informative about the
binding positions should increase cross-correlation magnitude,
whereas a randomly mapped set of tags should decrease it (Supple-
mentary Fig. 2). Using this approach for the NRSF data set (Fig. 2),
we found that alignments with matches spanning at least 18 bp and
zero mismatches improved the cross-correlation profile. However,
only full-length (25 bp) matches should be considered for tags with
two mismatches. Using this criterion to accept tags increased their
number over the set of perfectly aligned tags by 27% for the NRSF
data set, 30% for the CTCF data set and 36% for the STAT1 data set
(Supplementary Fig. 4 online). The incorporation of these tags
improved sensitivity and accuracy of the identified binding positions
(Supplementary Fig. 5 online).

Controlling for background tag distribution
The statistical significance of the tag clustering observed for a putative
protein binding position depends on the expected background pat-
tern. The simplest model assumes that the background tag density is
distributed uniformly along the genome and independently between
the strands11. In addition to the NRSF ChIP sample, Johnson et al.2

have sequenced a control input sample, providing an experimental
assessment of the background tag distribution. We found that the
background tag distribution exhibits a degree of clustering that is
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Figure 1 Protein-binding detection from ChIP-seq data. (a) Main steps of the proposed ChIP-seq processing pipeline. (b) Schematic illustration of ChIP-seq
measurements. DNA is fragmented or digested, and fragments cross-linked to the protein of interest are selected with immunoprecipitation. The 5¢ ends
(squares) of the selected fragments are sequenced, typically forming groups of positive- and negative-strand tags on the two sides of the protected region.
The dashed red line illustrates a fragment generated from a long cross-link that may account for the tag patterns observed in CTCF and STAT1 data sets.
(c) Tag distribution around a stable NRSF binding position. Vertical lines show the number of tags (right axis) whose 5¢ position maps to a given location on
positive (red) or negative (blue) strands. Positive and negative values on the y-axis are used to illustrate tags mapping to positive and negative strands,
respectively. The solid curves show tag density for each strand (left axis, based on Gaussian kernel with s ¼ 15 bp). (d) Strand cross-correlation for the
NRSF data. The y-axis shows Pearson linear correlation coefficient between genome-wide profiles of tag density of positive and negative strands, shifted
relative to each other by a distance specified on the x-axis. The peak position (red vertical line) indicates a typical distance separating positive- and
negative-strand peaks associated with the stable binding positions.

Table 1 Classification of tag alignments based on the length of the match and the number
of mismatches

16 17 18 19 20 21 22 23 24 25

0 63,388 50,613 34,707 21,230 16,775 14,453 11,068 6,556 54,455 1,234,829

1 16,625 25,991 24,715 23,431 17,540 12,705 31,416 192,975

2 295 3436 7,939 6,042 6,379 16,495

The table gives the number of NRSF data set tags whose best alignment falls within each class, as defined by the
length of alignment (columns) and the number of mismatches (rows). The tags from the NRSF data set were aligned
using BLAT. The number of mismatches includes the number of nucleotides covered by gaps.

1352 VOLUME 26 NUMBER 12 DECEMBER 2008 NATURE BIOTECHNOLOGY

A N A LY S I S

©
20

08
 N

at
ur

e 
Pu

bl
is

hi
ng

 G
ro

up
  h

ttp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

Kharchenko 2008
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Finding enriched regions

0

50

100

150

In
pu

t

0

50

100

150

R
ep

. 1
Pe

ak
s

R
ep

. 1

0

50

100

150

R
ep

. 2
Pe

ak
s

R
ep

. 2
En

ric
he

d
re

gi
on

s
R

ef
Se

q

Nanog Slc2a3

122.64 mb

122.65 mb

122.66 mb

122.67 mb

122.68 mb

122.69 mb

7.4 Isolation of promoters overlapping H3K27ac peaks
One of the questions of a ChIP seq analyses is whether ChIP-enriched regions preferentially overlap any
user defined features such as promoters or regions enriched with other modifications. To this end, the
overlap between peaks of ChIP-seq signal and the features of interest is analysed.

We exemplify such an analysis by testing how many of the H3K27ac enriched regions overlap promoter
regions.

Identification of promoters

We load the egs object holding the annotation of protein coding genes. The reader can find the code to
generate the egs object in the Appendix section Promoter isolation. The object egs is a data.frame containing
ensembl ID along with gene symbols, genomic coordiantes and orientation of of mouse genes.

13

Enriched regions (‘peaks’) - 
regions with signal which is 
significantly higher than the 
background - input or IgG 

Input reads - background reads’ 
distribution exhibits a degree of 
clustering that is significantly 
greater than expected from a 
homogenous Poisson process 
(P-value< 10-6, Kharchenko et 
al., 2008) 
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ChIP-Seq analysis<p>MACS performs model-based analysis of ChIP-Seq data generated by short read sequencers.</p>

Abstract

We present Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short
read sequencers such as Solexa's Genome Analyzer. MACS empirically models the shift size of
ChIP-Seq tags, and uses it to improve the spatial resolution of predicted binding sites. MACS also
uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for
more robust predictions. MACS compares favorably to existing ChIP-Seq peak-finding algorithms,
and is freely available.

Background
The determination of the 'cistrome', the genome-wide set of
in vivo cis-elements bound by trans-factors [1], is necessary
to determine the genes that are directly regulated by those
trans-factors. Chromatin immunoprecipitation (ChIP) [2]
coupled with genome tiling microarrays (ChIP-chip) [3,4]
and sequencing (ChIP-Seq) [5-8] have become popular tech-
niques to identify cistromes. Although early ChIP-Seq efforts
were limited by sequencing throughput and cost [2,9], tre-
mendous progress has been achieved in the past year in the
development of next generation massively parallel sequenc-
ing. Tens of millions of short tags (25-50 bases) can now be
simultaneously sequenced at less than 1% the cost of tradi-

tional Sanger sequencing methods. Technologies such as Illu-
mina's Solexa or Applied Biosystems' SOLiD™ have made
ChIP-Seq a practical and potentially superior alternative to
ChIP-chip [5,8].

While providing several advantages over ChIP-chip, such as
less starting material, lower cost, and higher peak resolution,
ChIP-Seq also poses challenges (or opportunities) in the anal-
ysis of data. First, ChIP-Seq tags represent only the ends of
the ChIP fragments, instead of precise protein-DNA binding
sites. Although tag strand information and the approximate
distance to the precise binding site could help improve peak
resolution, a good tag to site distance estimate is often
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reads’ respective mode positions. The midpoint between the posi-
tive and negative modes is then used to align all the reads belonging 
to model peaks. The alignment generates a bimodal pattern: most 
reads from the positive strand appear on the left, and most reads 
from the negative strand appear on the right. The distance between 
bimodal summits yields the estimated DNA fragment size d, and all 
reads are extended in the 3  direction until d is obtained.

In the majority of cases, the above procedure, which is referred to 
as building the peak model, provides a reasonable estimate of frag-
ment size. However, excessive chromatin shearing or transcription 
factors with broad enrichment may cause MACS to estimate a value 
of d that is too small. When this happens (e.g., when d  <  60 bp), 
we recommend that users rerun MACS with a specified distance 
based on the size selection in the sequencing library preparation. 
In addition, the value of d should be similar for multiple ChIP-seq 
samples corresponding to the same factor in the same study to 
ensure comparable downstream analyses among samples.

Calculate peak enrichment using local background normaliza-
tion. On the basis of the position-adjusted reads, MACS slides a 
window of size 2d across the genome to identify regions that are sig-
nificantly enriched relative to the genome background. Overlapping 
significant windows are then merged to form candidate regions 
for further analysis. Because many factors influence the local read 
enrichment distribution, MACS models the number of reads from 
a genomic region as a Poisson distribution with dynamic parameter 

local. That is, instead of using a constant value of , local values are 
allowed to vary along the genome. Specifically, the value of local 
for a specific region is defined as max ( BG, [ region, 1k], 5k, 10k), 
where BG is a constant estimated from the genome background, 

region is estimated from the candidate region under consideration 
in the control sample and the remaining x values are estimated 
from an x-bp window centered at the candidate region in the con-
trol sample. When ChIP-seq and control samples are sequenced 
at different depths, MACS either linearly scales down the larger  
sample (default behavior) or scales up the smaller sample. For 
example, after removing redundant reads, if the total number of 
reads in the control sample is greater than the number of reads 
obtained from ChIP-seq by a factor of r (r  >  1), then when cal-
culating the P value local will be divided by r by default. When 
a control sample is not available, local is calculated from the  
ChIP-seq sample, excluding region and 1k. On the basis of local, 
MACS assigns every candidate region an enrichment P value, and 
those passing a user-defined threshold (the default is 10 − 5) are 
reported as the final peaks.

Estimating the empirical false discovery rate by exchanging 
ChIP-seq and control samples. When a control sample is avail-
able, MACS can also estimate an empirical FDR for every peak 
by exchanging the ChIP-seq and control samples and identifying 
peaks in the control sample using the same set of parameters used 
for the ChIP-seq sample. Because the control sample should not 
exhibit read enrichment, any such peaks found by MACS can be 
regarded as false positives. For a particular P value threshold, the 
empirical FDR is then calculated as the number of control peaks 
passing the threshold divided by the number of ChIP-seq peaks 
passing the same threshold.

Comparison with existing methods
Various methods that incorporate different strategies have been 
proposed for analyzing ChIP-seq data. For example, to find peak 
candidates, many methods including SISSRs22, USeq12 and MACS13 
identify clusters consisting of reads that overlap or are located 
within a fixed distance. Alternatively, CisGenome23 and SICER24 
use nonoverlapping sliding windows to identify candidate regions. 
To identify binding sites more accurately, MACS extends reads in 
the 3  direction until the estimated DNA fragment size is reached, 
a strategy also used by SICER24. The majority of methods use a 
background or null model to assign a significance score to each 
peak region identified by the method. PeakSeq8 models the number 
of reads mapped to a peak region using a binomial distribution. 
CisGenome23 applies a negative binomial distribution to model 
windows of low read count. MACS uses a Poisson distribution 
to accurately approximate a binomial distribution and calculates 
dynamic Poisson parameters for each region to obtain a distribu-
tion having more flexibility than the negative binomial distribu-
tion. FindPeaks25 works differently by implementing a Monte Carlo 
simulation to calculate the likelihood of observing a peak of a given 
height. To calculate an empirical FDR, methods such as USeq12 and 
QuEST26 identify false-positive peaks by considering two inputs 
constructed from the control sample instead of exchanging the 
ChIP-seq and control samples as proposed by MACS. Previous 
reviews and systematic comparison studies provide further details 
regarding ChIP-seq experiments and comparisons of peak-calling 
algorithms2,27–32.

Applications and limitations
MACS can be applied to scenarios other than calling enriched 
regions from ChIP-seq data. MACS 1.4.2 and older versions can 

Treatment Control

Remove redundancy

Build model and estimate
DNA fragment size d

Select 1,000 regions with a
10- to 30-fold enrichment relative

to the genome background

Shift reads toward 3 end by d

Scale two libraries

Call candidate peaks relative to genome background

Calculate FDR by exchanging treatment and control

Calculate P value and filter candidate peaks

Calculate dynamic  for candidate peaks

Remove redundancy

Figure 1 | Workflow of MACS 1.4.2. If the control sample is missing, then 
the steps shown in white boxes will be skipped (remove redundancy of 
the control sample, scale two libraries and calculate FDR by exchanging 
treatment and control).

- removes PCR duplicates

- d is estimated by picking highly enriched 
regions and looking at the distance 
between modes of positive and negative 
strand read pileups. Reads are extended 
towards this midpoint (building peak model)

- Sliding window of 2d to find significantly 
enriched bins using λlocal. We obtain 
enrichment P-value

- eFDR by swapping control and treatment



Several examples of peak callers

SICER - designed to deal with histone type data 
PeakSeq, chromHMM ... 

Peak callers in

PICS

BayesPeak - suitable for TFs and histone modifications displaying peak-
like signal

MOSAiCS - suitable for TF and histone modification data

ChIPseqR - suitable for nucleosome positioning analysis

CSAR NarrowPeaks CSSP ....

http://home.gwu.edu/~wpeng/Software.htm
http://home.gwu.edu/~wpeng/Software.htm
http://info.gersteinlab.org/PeakSeq
http://info.gersteinlab.org/PeakSeq
http://www.bioconductor.org/packages/release/bioc/html/CSSP.html
http://www.bioconductor.org/packages/release/bioc/html/CSSP.html
http://www.bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
http://www.bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
http://www.bioconductor.org/packages/release/bioc/html/CSAR.html
http://www.bioconductor.org/packages/release/bioc/html/CSAR.html
http://www.bioconductor.org/packages/release/bioc/html/ChIPseqR.html
http://www.bioconductor.org/packages/release/bioc/html/ChIPseqR.html
http://www.bioconductor.org/packages/release/bioc/html/mosaics.html
http://www.bioconductor.org/packages/release/bioc/html/mosaics.html
http://www.bioconductor.org/packages/release/bioc/html/BayesPeak.html
http://www.bioconductor.org/packages/release/bioc/html/BayesPeak.html
http://www.bioconductor.org/packages/release/bioc/vignettes/PICS/inst/doc/PICS.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/PICS/inst/doc/PICS.pdf


Peak processing - quality controls

- how do we decide whether samples and peaks are OK? 

April 2012, 478 ChIP-seq data sets had been submitted to GEO
at accession ID PRJNA63441, with submission of all current
ENCODE data to be completed by June 2012. UCSC houses the
ENCODE data (Rosenbloom et al. 2011) and modMine houses
the modENCODE data (Contrino et al. 2011).

Box 4 provides a detailed description of the data and experi-
mental and analytical details to be shared so that others can re-
produce both experiments and analyses. Shared information includes
the experimental procedures for performing the ChIP, antibody in-
formation and validation data, as well as relevant DNA sequencing,
peak calling, and analysis details. For ENCODE experiments that do
not meet the guidelines described above, data and results may be
reported, with a note indicating that the criteria have not been met
and explaining why the data are nevertheless released.

Discussion
The ENCODE and ModENCODE standards and practices presented
here will be further revised as the protocols, technologies, and our
understanding of the assays change. Updated versions will be re-
leased and made available at http://encodeproject.org/ENCODE/
experiment_guidelines.html. We have begun to address the central
but vexing issue of immune reagent specificity and performance
by establishing a menu of primary and secondary methods for
antibody characterization, including performance-reporting prac-
tices. We also developed and applied global metrics to assess the

quality of several aspects of an individual ChIP-seq experiment:
Library complexity can be measured by the nonredundant fraction
(NRF); immunoenrichment can be measured by the fraction of reads
in called peaks (FRiP) and by cross-correlation analysis (NSC/RSC);
and replicate significance can be measured by IDR. We related these
global quality measures to more traditional inspection of ChIP-seq
browser tracks (Fig. 5) and discuss below how different aspects of
data quality interact with specific uses of ChIP-seq data.

How good can a ChIP-seq experiment be?
Thus far, the most successful point-source factor experiments
for ENCODE have FRiP values of 0.2–0.5 (factors such as REST,
GABP, and CTCF) (Fig. 4C) and NSC/RSC values of 5–12. Al-
though these quality scores and characteristics were routinely
obtained for the best-performing factor/antibody combinations,
they are not the rule; for most transcription factors, the ChIP
quality metrics were substantially lower and more variable (Fig. 7).
We believe that multiple issues contribute to the variability; the
quality of antibody (affinity and specificity) is surely important, but
epitope availability within fixed chromatin, sensitivity of the anti-
body to post-translational modifications of the antigen, how long and
how often the protein is bound to DNA, and other physical charac-
teristics of the protein–DNA interaction likely also contribute. Further
work with epitope-tagged factors, for which the antibody is not
a variable, should begin to sort among the possibilities.

Figure 6. The irreproducible discovery rate (IDR) framework for assessing reproducibility of ChIP-seq data sets. (A–C ) Reproducibility analysis for a pair
of high-quality RAD21 ChIP-seq replicates. (D,E ) The same analysis for a pair of low quality SPT20 ChIP-seq replicates. (A,D) Scatter plots of signal scores
of peaks that overlap in each pair of replicates. (B,E ) Scatter plots of ranks of peaks that overlap in each pair of replicates. Note that low ranks correspond
to high signal and vice versa. (C,F ) The estimated IDR as a function of different rank thresholds. (A,B,D,E ) Black data points represent pairs of peaks that pass
an IDR threshold of 1%, whereas the red data points represent pairs of peaks that do not pass the IDR threshold of 1%. The RAD21 replicates show high
reproducibility with ;30,000 peaks passing an IDR threshold of 1%, whereas the SPT20 replicates show poor reproducibility with only six peaks passing
the 1% IDR threshold.
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The irreproducible discovery rate 
(IDR, Li 2011) - rank peaks and 
assess for consistency

Distinct and strong peaks are 
often called by most of peak 
finding software 
Low strength peaks are often 
noisy 
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Visualization - seeing is believing
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7.4 Isolation of promoters overlapping H3K27ac peaks
One of the questions of a ChIP seq analyses is whether ChIP-enriched regions preferentially overlap any
user defined features such as promoters or regions enriched with other modifications. To this end, the
overlap between peaks of ChIP-seq signal and the features of interest is analysed.

We exemplify such an analysis by testing how many of the H3K27ac enriched regions overlap promoter
regions.

Identification of promoters

We load the egs object holding the annotation of protein coding genes. The reader can find the code to
generate the egs object in the Appendix section Promoter isolation. The object egs is a data.frame containing
ensembl ID along with gene symbols, genomic coordiantes and orientation of of mouse genes.
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Visualization - other tools

IGB - Integrated Genome Browser - 
http://bioviz.org/igb/index.html

IGV - Integrative Genomics Viewer
https://www.broadinstitute.org/igv/

http://bioviz.org/igb/index.html
http://bioviz.org/igb/index.html
https://www.broadinstitute.org/igv/
https://www.broadinstitute.org/igv/


Visualization - file formats

.bed

.bedGraph

.wig

.bigWig

RBinned 
or not 
data
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Peak analysis

ChIPpeakAnno - provides functions performing peak annotation to promoters etc.

Frequently asked questions include:
- Localization of peaks with respect to functional elements in the genome (promoters, gene 
body, introns, transcription termination sites, intergenic regions etc.)
- Co-ocurrence between enriched regions
- The distribution of signal at the peaks

biomaRt - easy access to data bases including gene annotation, sequence conservation, 
sequence retrieval etc. 

GenomicRanges - fast comparison between genomic intervals:
findOverlaps()
countOverlaps()
nearest()
Easy peak annotation to pre-established or new genomic features, cross-comparisons 
between peak locations and any kind of imaginable analysis

VennDiagram - visualization of two or multi-sample overlaps

Rcade - integrates ChIP-seq analysis with differential expression 

http://www.bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://www.bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://www.bioconductor.org/packages/release/bioc/html/biomaRt.html
http://www.bioconductor.org/packages/release/bioc/html/biomaRt.html
http://www.bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://www.bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://cran.r-project.org/web/packages/VennDiagram/VennDiagram.pdf
http://cran.r-project.org/web/packages/VennDiagram/VennDiagram.pdf
http://www.bioconductor.org/packages/release/bioc/html/Rcade.html
http://www.bioconductor.org/packages/release/bioc/html/Rcade.html


Peak analysis - GREAT tool

http://bejerano.stanford.edu/great/public/html/
http://bejerano.stanford.edu/great/public/html/
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Peak analysis - motifs

MEME - provides functions performing motif discovery

RSAT - complete suite for motif finding

JASPAR/TRANSFAC - data bases of PWM

Position Weight Matrix (PWM) - describes the probability of each nucleotide at each 
position of a motif

R: MotifDb, FIMO and others

http://meme-suite.org/
http://meme-suite.org/
http://rsat.ulb.ac.be/
http://rsat.ulb.ac.be/
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Co-enrichment and signal distribution analysis

series of high-salt washes, and bound proteins were then eluted and
examined by silver stain and western blot analysis. The results show
that cohesin and Nipbl co-purified with mediator throughout this
protocol (Fig. 3c). Additional evidence for a mediator–cohesin inter-
action came from an unbiased, multidimensional protein identification
technology (MudPIT)-based screen for mediator-associated factors in
HeLa cells32. Collectively, these results indicate that mediator, cohesin
and Nipbl physically interact and suggest that this interaction
accounts for their co-occupancy at active promoters in vivo.

Mediator and cohesin predict DNA looping
Our evidence shows that mediator, cohesin and Nipbl interact and co-
occupy the enhancer and core promoter regions of a set of active genes
in ES cells, indicating that they contribute to DNA looping between
the enhancer and core promoter of these genes. We selected four
different loci, Nanog, Phc1, Oct4 and Lefty1, to test enhancer–
promoter interaction frequencies in ES cells and in murine embryonic
fibroblasts (MEFs). These genes were selected because mediator and
cohesin occupy their enhancer and core promoter regions in ES cells,
where they have a positive role in their transcription, whereas medi-
ator and cohesin are not present at these genes in MEFs, where these
genes are transcriptionally silent.

We used 3C technology33 to determine whether a looping event
could be detected between the enhancer and promoter of Nanog,
Phc1, Oct4 and Lefty1 loci in both ES cells and MEFs (Fig. 4 and
Supplementary Fig. 7). For all loci tested we observed an increased
interaction frequency between the core promoter and the enhancer in
ES cells, indicating the presence of a DNA loop. Importantly, this

interaction was not observed in MEFs where Nanog, Phc1, Oct4 and
Lefty1 are silent and not occupied by mediator and cohesin.
Furthermore, a reduction in Smc1a or Med12 expression levels
resulted in a decreased interaction frequency between the core pro-
moter and enhancer of Nanog (Supplementary Fig. 8). These 3C
results are consistent with a model where the mediator–cohesin–
Nipbl complex promotes cell-type-specific gene activation through
enhancer–promoter DNA looping.

Cell-type specificity
The observation that mediator, cohesin and Nipbl occupied the pro-
moters of ES-cell-specific genes such as those encoding the pluripotency
regulators Oct4 and Nanog (Fig. 2a) led us to ask whether mediator and
cohesin tend to occupy cell-type-specific genes. Indeed, mediator and
cohesin were found to co-occupy very different sets of promoters in ES
cells and MEFs (Fig. 5a and Supplementary Tables 4–6). In contrast,
many of the sites occupied by cohesin and CTCF in ES cells were also
co-occupied by these proteins in MEFs (Fig. 5b and Supplementary
Tables 4–6). The levels of mediator were found to be considerably
higher in ES cells than in MEFs (Fig. 5c), accounting for the differences
in the number of sites co-occupied by mediator and cohesin in the two
cell types. These observations indicate that mediator and cohesin have
especially important roles in cell-type-specific gene expression and
thus, in cell-type-specific chromosome structure.

Discussion
Evidence for specific DNA loop formation during transcription ini-
tiation was first described in bacteria and bacteriophage gene
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Figure 2 | Genome-wide occupancy of mediator and cohesin in ES cells.
a, Binding profiles for ES cell transcription factors (Oct4, Nanog and Sox2),
mediator (Med1 and Med12), cohesin (Smc1a, Smc3 and Nipbl), CTCF and
components of the transcription apparatus (Pol2 and TBP) at the Oct4 and
Nanog loci. ChIP-Seq data are shown in reads per million with the y axis floor
set to 0.5 reads per million. Oct4/Sox2, CTCF and TBP (TATA box) sequence
motifs are indicated. b, Venn diagram showing the overlap of high-confidence
(P , 1029) cohesin (Smc1a) occupied sites with those bound by CTCF,
mediator (Med12) and Nipbl. c, Region map showing that Smc1a, Nipbl and

Med12 co-occupied sites generally occur in close proximity to Pol2 and in the
absence of CTCF. For each Smc1a occupied region, the occupancy of Med12,
Nipbl, Pol2 and CTCF is indicated within a 10-kb window centred on the
Smc1a region. d, Heat map indicating that regions co-occupied by Smc1a,
Med12 and Nipbl, which are associated with active genes, exhibit similar
expression changes with knockdown of Smc1a, Med12 or Nipbl. Log2

expression data were ordered based on the Smc1a knockdown data and are
shown for all Smc1a, Med12 and Nipbl co-occupied regions that could be
mapped to a gene, as described in Supplementary Information.
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Visualization

Heatmaps of signal enrichment at
- promoters

- loci enriched with factors of interest
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We observe a strong enrichment of H3K27ac modification right after the TSS and a weaker peak of
H3K27ac at the region immediately upstream of the TSS.

8 Appendix

8.1 Obtaining data from European Nucleotide Archive
The European Nucleotide Archive (http://www.ebi.ac.uk/ena) provides many types of raw sequencing
data, sequence assembly information and functional annotation. We download the data corresponding to
ChIP-seq experiment mapping the H3K27ac histone modification in mouse Embryonic Stem cells (mES
cells) along with the input control sample from the study Histone H3K27ac separates active from poised en-
hancers and predicts developmental state by Creyghton et al.

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR066/SRR066787/SRR066787.fastq.gz .
wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR066/SRR066766/SRR066766.fastq.gz .
wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR066/SRR066767/SRR066767.fastq.gz .
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We will see an example of such an 
analysis using R package 

GenomicRanges

A nice alternative: HT-Seq (python) 

http://www-huber.embl.de/HTSeq/doc/overview.html
http://www-huber.embl.de/HTSeq/doc/overview.html


Comparative peak analysis

Threshold issues affecting all qualitative analyses

Condition 2

category=c(name1, name2), fill=colors,
col=colors,cat.cex=0.6) -> vd

}

The overlap plot.

plotOverlapsAsVennDiag( peaks.rep1, peaks.rep2,
name1 = 'Rep. 1',
name2 = 'Rep. 2',
c('steelblue', 'blue3') )

700 7002332

Rep. 1 Rep. 2

We will focus only on peaks identified in both replicates (hereafter refered to as enriched areas). The
enriched areas are colored in green.

enriched.regions = Reduce(subsetByOverlaps, list(peaks.rep1, peaks.rep2))

enr.reg.track = AnnotationTrack(enriched.regions,
genome="mm9", name='Enriched regions',
chromosome='chr6',
shape='box',fill='green3',size=2)

plotTracks(c(input.track, rep1.track, peaks1.track,
rep2.track, peaks2.track, enr.reg.track,
bm, AT),

from=122630000, to=122700000,
transcriptAnnotation="symbol", window="auto",
type="histogram", cex.title=0.5, fontsize=10 )

12

Condition 1



Comparative peak analysis

DiffBind

1. Count reads in peaks in all the replicates and conditions
2. Perform edgeR or DESeq2 analysis - dba.analyze()
3. Provides various plotting functions

MMDiff

1. Count reads in peaks in all the replicates and conditions 
2. Performs DESeq  normalisation
3. Compares peak shapes using kernel based statistical tests

http://www.bioconductor.org/packages/release/bioc/html/DiffBind.html
http://www.bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/MMDiff.html
http://bioconductor.org/packages/release/bioc/html/MMDiff.html


ChIPQC package for quality control checks and 
quantitative analysis of peak strengths

1. Plotting coverage histograms for peaks
2. Cross-coverage analysis in the function of shift sizes
3. Plotting peak profiles
4. Sample clustering

Assessing ChIP-seq sample quality with ChIPQC 10
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Figure 1: Example Coverage Histogram plot. Generated by plotCoverage-
Hist(tamoxifen,facetBy=c("Tissue","Condition"))

The resulting report is not included in this vignette due to space limitations, but you are invited to generate it yourself
and have a look. It is also available for examination at http://ChIPQC.starkhome.com/Reports/tamoxifen/ChIPQC.
html.

3.5 Plotting QC metrics for experimental sample groups

As an alternative to generating a complete summary report, plotting methods are provided to generate specific plots, as
follows:

3.5.1 Plotting Coverage Histograms

The coverage histogram plot is generated as follows:

> plotCoverageHist(tamoxifen,facetBy=c("Tissue","Condition"))

As shown in Figure 1, this plots the distribution of pileup values at each basepair. The first thing to looks for is that the
controls are ”below”the ChIPs in the plots. Enriched ChIP samples will tail o↵ less quickly than input controls consisting
of background reads, indicating positions with high pileup values (ultimately corresponding to peaks).

3.5.2 Plotting Cross-Coverage

A cross-coverage plot can be generated as follows:

> plotCC(tamoxifen,facetBy=c("Tissue","Condition"))

As shown in Figure 2, this plots the cross-coverage values over a range of shift sizes. The region up to the read length
is highlighted, and a small peak in cross-coverage is expected to be found here. Notice that the controls do not have
another higher peak, while ChIP samples with good enrichment have another peak in cross-coverage value at the fragment
length, as shifting the reads on both strand should increase coverage at peak sites.

Assessing ChIP-seq sample quality with ChIPQC 17
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Figure 9: Sample-level cross-coverage plot. Generated by figSampCC(CTCF)

[1] "list"

> length(sampleList)

[1] 16

> names(sampleList)

[1] "BT4741" "BT4742" "MCF71" "MCF72" "MCF73" "T47D1" "T47D2" "TAMR1" "TAMR2"
[10] "ZR751" "ZR752" "BT474c" "MCF7c" "T47Dc" "TAMRc" "ZR75c"

> class(sampleList[[1]])

[1] "ChIPQCsample"
attr(,"package")
[1] "ChIPQC"

Suppose we also have constructed a matching samplesheet as a data.frame:

> sampleSheet = read.csv(file.path(system.file("extdata", package="ChIPQC"),

+ "tamoxifenQC.csv"))

> sampleSheet

SampleID Tissue Factor Condition Treatment Replicate bamReads
1 BT4741 BT474 ER Resistant Full-Media 1 reads/Chr18_BT474_ER_1.bam
2 BT4742 BT474 ER Resistant Full-Media 2 reads/Chr18_BT474_ER_2.bam
3 MCF71 MCF7 ER Responsive Full-Media 1 reads/Chr18_MCF7_ER_1.bam

http://bioconductor.org/packages/release/bioc/html/ChIPQC.html
http://bioconductor.org/packages/release/bioc/html/ChIPQC.html
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