
TESTING R PACKAGES

A SHORT OVERVIEW AND INTRODUCTION TO tinytest

Dirk Eddelbuettel
BioConductor Developers Forum

25 Feb 2021

https://dirk.eddelbuettel.com/papers/bioc_testing_feb2021.pdf

https://dirk.eddelbuettel.com/papers/bioc_testing_feb2021.pdf

OUTLINE

Points Covered

• What is testing? What is a unit test?

• “WDRCS” aka What Does R Core Say?

• Brief Survey of Approaches and Packages

• Short Intro to tinytest (incl. Conversion from RUnit)

2/27

WHAT IS TESTING? WHY DO WE CARE?

Source: https://twitter.com/themarcba/status/1362369937688453120

Informally speaking

Testing may help with …

• simple syntactical errors

• or logic / semantic blunders

• or toolchain changes (!!)

• or thinkos

3/27

https://twitter.com/themarcba/status/1362369937688453120

A SIMPLE DEFINITION

“Validating That Invariants Are Just That”

• We sometimes have a maintained set of assumptions

• We probably do not need to check (system library) functions like sqrt(4)
• because implicitly we trust the system we are on already did that for us
• but maybe ‘trust and verify’ beats ‘trust and pray’ ?

• We probably do want to check anything computationally ‘sensitive’
• and that could be as simple as an (iterative) line search algorithm
• which may have multiple steps and a convergence criterion
• so test on that ‘new and shiny piece of metal’ (Apple M1 anyone?)

4/27

“WDRCS” AKA WHAT DOES R CORE SAY ?

Very Little! Zero mention of ‘unit test’ or the testing packages (but see below)

One paragraph in WRE 1.1.5 Package Subdirectories (using the current r-devel)

Subdirectory tests is for additional package-specific test code, similar to the
specific tests that come with the R distribution. Test code can either be pro-
vided directly in a .R (or .r as from R 3.4.0) file, or via a .Rin file containing
code which in turn creates the corresponding .R file (e.g., by collecting all
function objects in the package and then calling them with the strangest ar-
guments). The results of running a .R file are written to a .Rout file. If there
is a corresponding[^21] .Rout.save file, these two are compared, with differ-
ences being reported but not causing an error. [Two more sentence omitted.]

Plus one outburst about one less-than-perfectly-successful release of one testing package.

5/27

“WDRCS” AKA WHAT DOES R CORE SAY ?

Minimal Setup

• Directory tests can have scripts to be executed (and we come back to this later)

• Output of each script foo.R will be collected in foo.Rout

• If present, a file foo.Rout.save will be used for (clever enough) line-by-line
comparison (skipping version numbers from the R session etc)

• This is … somewhat rustic but surprisingly robust … and used by the packages that
come with R (and the ‘Recommended’ packages)

• Else one can also ‘just loop over a large set of assertions’ (and data.table does
just that, and well, with a helper function)

6/27

ENTER UNIT TEST PACKAGES

7/27

UNIT TEST PACKAGES

Contestants

• RUnit: “R Unit Test Framework”
N=120, released June 2006, quirky setup and output, S4-based, robust
also used by several metric tons of BioConductor packages

• testthat: “Unit Testing for R”
N=5626, released November 2009, widely used, many extensions

• unittest: “TAP-Compliant Unit Testing”
N=3, released August 2014, used only by its authors

• tinytest: “Lightweight and Feature Complete Unit Testing Framework”
N=135, released April 2019, new, simple, zero dependencies, rising in popularity
currently used by four BioConductor packages

Counts from 19 Feb 2021 using str(tools::package_dependencies(pkgs, reverse=TRUE, db=tools::CRAN_package_db(), which=”most”))
8/27

TINYTEST

9/27

TINYTEST

Highlights

• Simple, fast, easy, zero dependencies

• Files can be run as scripts via Rscript (and/or my r from littler)

• Files install along with the package (just like RUnit)

• Tests can be run
• per file
• per test directory
• per (installed) package
• in a build / load / test cycle
• both serially and in parallel

• Side effects are monitored (e.g. environment variables)
10/27

ADDING TINYTEST

Three Simple Things

• Add a Suggests: tinytest to DESCRIPTION

• Invoke tinytest conditionally from tests/tinytest.R e.g., via
if (requireNamespace(”tinytest”, quietly=TRUE))

tinytest::test_package(”testpkg”)

• Add your tests in files inst/tinytest/test_*.R

And a helper function setup_tinytest() does just that.

11/27

TINYTEST

Conversion from RUnit

• Pretty straightforward, have done did it for well over a dozen packages

• Mostly search and replace
• as the ‘triplet’ <argA, argB, msg> may become <argA, argB>
• checkEquals, checkTrue, … become expect_equal, expect_true
• many available expect_* predicates

• Files become standard R scripts, no extra requirements

12/27

TINYTEST

Conversion from RUnit: Real (yet randomly chosen) Rcpp S4 example

some function conditional wrapping this ...
test.S4.dotdataslot <- function(){

setClass(”Foo”, contains = ”character”, representation(x = ”numeric”))
foo <- S4_dotdata(new(”Foo”, ”bla”, x = 10))
checkEquals(as.character(foo) , ”foooo”)

}

is now

test.S4.dotdataslot <- function(){
setClass(”Foo”, contains = ”character”, representation(x = ”numeric”))
foo <- S4_dotdata(new(”Foo”, ”bla”, x = 10))
expect_equal(as.character(foo) , ”foooo”)

13/27

TINYTEST: ANOTHER (REAL) CONVERSION EXAMPLE FROM RUNIT TO TINYTEST

.setUp <- RcppArmadillo:::unit_test_setup(”rng.cpp”)

test.randu.seed <- function() {
set.seed(123)
a <- randu(10)
set.seed(123)
b <- randu(10)
checkEquals(a, b, msg=”randu seeding”)

}

test.randi.seed <- function() {
set.seed(123)
a <- randi(10)
set.seed(123)
b <- randi(10)
checkEquals(a, b, msg=”randi seeding”)

}

... more omitted ...

library(RcppArmadillo)

Rcpp::sourceCpp(”cpp/rng.cpp”)

#test.randu.seed <- function() {
set.seed(123)
a <- randu(10)
set.seed(123)
b <- randu(10)
expect_equal(a, b)#, msg=”randu seeding”)

#test.randi.seed <- function() {
set.seed(123)
a <- randi(10)
set.seed(123)
b <- randi(10)
expect_equal(a, b)#, msg=”randi seeding”)

... more omitted ...

14/27

TINYTEST: COMPARING STARTUP FILES

RUnit

parts of the remaining unconverted `tests/doRUnit.R`
stopifnot(require(RUnit, quietly=TRUE))
if an option is set, we run tests. otherwise we don't.
recall that we DO need a working Bloomberg connection...
if (getOption(”blpUnitTests”, FALSE)) {

load the package
stopifnot(require(Rblpapi, quietly=TRUE))
without this, we get (or used to get) unit test failures
Sys.setenv(”R_TESTS”=””)
Sys.setenv(”RunRblpapiUnitTests” = ”yes”)
Define tests
testSuite <- defineTestSuite(name=”Rblpapi Unit Tests”,

dirs=system.file(”unitTests”,
package = ”Rblpapi”),

testFuncRegexp = ”^[Tt]est.+”)
tests <- runTestSuite(testSuite) # Run tests
printTextProtocol(tests) # Print results
Return success or failure to R CMD CHECK
if (getErrors(tests)$nFail > 0) stop(”TEST FAILED!”)
if (getErrors(tests)$nErr > 0) stop(”TEST HAD ERRORS!”)
if (getErrors(tests)$nTestFunc < 1) stop(”NO TEST FUNCTIONS RUN!”)

}

tinytest

if (requireNamespace(”tinytest”, quietly=TRUE))
tinytest::test_package(”testpkg”)

15/27

CONDITIONING TINYTEST: REAL EXAMPLES

As tinytest files are just R files, any R expression works. Actual Examples follow:

if (!requireNamespace(”Matrix”, quietly=TRUE))
exit_file(”Need the 'Matrix' package”)

if (packageVersion(”Matrix”) < ”1.3.0”)
exit_file(”Old 'Matrix' package?”)

if (tiledb_version(TRUE) < ”2.2.0”)
exit_file(”Needs TileDB 2.2.* or later”)

if (Sys.getenv(”RunAllRcppTests”) != ”yes”)
exit_file(”Set 'RunAllRcppTests' to 'yes' to run.”)

16/27

TINYTEST

Benefits I have seen

• Simpler use: For Rcpp we had to ensure paths in order to sourceCpp() C++
components of tests – this all just works now

• Simpler scripts: I can treat the files as scripts and ‘just run them’ (and for that I
often add library(tinytest); library(thisPackage))

• Run directory, run file, run package
• which I find myself doing all time time during development

• Lightweight, zero depends
• which you think may not matter til it does…

• Nicely concise and pleasant summary

17/27

TINYTEST

One More Things: Extensible

• Michel Lang was first to plug-in (100+ ?) assertions from this checkmate package

• For student grading in the (awesome, automated) PrairieLearn backend at Illinois,
we realized that “unit testing == submission grading” so we wrote a setup where I
exam or quiz or home work questions are … validated with unit test predicates
and summaries

• For incorrect answers, we realized we could marry tinytest with diffobj (a
nice object difference visualizer) and created ttdo (on CRAN too)

• (Those two are joint with Alton Barbehenn who is an awesome TA)

18/27

TINYTEST DOCUMENTATION

19/27

TINYTEST BACKGROUND

The Key Idea Behind the Implementation

At arXiv:2002:07472

and forthcoming, R Journal

20/27

https://arxiv.org/abs/2002.07472

CAVEAT

21/27

WHAT COULD STILL GO WRONG?

Source:
https://twitter.com/laurieontech/status/1355600163226660872

Limitations
• Tests cannot guarantee correctness

• We must remain awake, alert, attentive

• So still no free lunch…

• Yet testing arguably helps a lot

22/27

https://twitter.com/laurieontech/status/1355600163226660872

THINGS NOT COVERED TODAY

• Code Coverage
• Useful metric I was at first somewhat sceptical about
• And which I clearly game at times too (hello, my friend #nocov)
• But which has helped me find a bug or two

• The other two test runner packages on CRAN
• Mostly similar rather than different

• Testing and Continuous Integration

• Test Aggregation (TAP Protocol)
• Most have exporters so if you’re into this you know where to look

23/27

THINGS COVERED TODAY

• R has basic support for testing, offers a hook

• RUnit was first widely package: quite useful but quirky

• tinytest is the newest entry
• simple, clean, efficient, lightweight
• serial or parallel use
• works with source and installed package
• works directly with files
• extensible

24/27

Yep!
Image source https://www.howtogeek.com/403438/do-the-people-you-follow-on-social-media-spark-joy/

25/27

https://www.howtogeek.com/403438/do-the-people-you-follow-on-social-media-spark-joy/

THANKS!

26/27

THANK YOU!

slides https://dirk.eddelbuettel.com/presentations/

web https://dirk.eddelbuettel.com/

mail dirk@eddelbuettel.com

github @eddelbuettel

twitter @eddelbuettel

27/27

https://dirk.eddelbuettel.com/presentations/
https://dirk.eddelbuettel.com/
dirk@eddelbuettel.com
@eddelbuettel
@eddelbuettel

	Enter Unit Test Packages
	tinytest
	Caveat
	Thanks!

