Package 'ChIPComp'

May 15, 2024

Type Package
Title Quantitative comparison of multiple ChIP-seq datasets
Version 1.34.0
Author Hao Wu, Li Chen, Zhaohui S.Qin, Chi Wang
Maintainer Li Chen <li.chen@emory.edu></li.chen@emory.edu>
Depends R (>=
3.2.0), GenomicRanges, IRanges, rtracklayer, GenomeInfoDb, S4Vectors
Imports Rsamtools, limma, BS genome. Hsapiens. UCSC. hg19,
BSgenome.Mmusculus.UCSC.mm9,BiocGenerics
Suggests BiocStyle,RUnit
Description ChIPComp detects differentially bound sharp binding sites
across multiple conditions considering matching control.
License GPL
LazyLoad yes
biocViews ChIPSeq, Sequencing, Transcription, Genetics, Coverage,
MultipleComparison, DataImport
NeedsCompilation yes
git_url https://git.bioconductor.org/packages/ChIPComp
git_branch RELEASE_3_19
git_last_commit 7f6de83
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-15

Contents

ChIPComp-package	2
ChIPComp	2
nakeConf	3
nakeCountSet	4

ChIPComp

plot.ChIPComp	
print.ChIPComp	
seqData	5
	R

Index

ChIPComp-package Detect differential binding sites for ChIP sequencing data

Description

ChIPComp is an R library performing the differential binding analysis for ChIP-seq count data. Compared with other similar packages (DBChIP, DIME), ChIPComp considers the control samples in the process of detecting the differential binding sites. Extensive simulation results showed that ChIPComp performs favorably compared to DBChIP and DIME when the control samples are ignored. ChIPComp only works for two group comparison at this time, that is, to detect the differential binding sites for one transcription factor(histone) between two conditions (cell lines). We plan to extend the functionalities and make it work for more general experimental designs in the near future.

Author(s)

Hao Wu <hao.wu@emory.edu>, Li Chen <li.chen@emory.edu>

ChIPComp

Perform hypothesis testing to detect differential binding sites

Description

Perform hypothesis testing to detect differential binding sites

Usage

```
ChIPComp(countSet, A, threshold=1)
```

Arguments

countSet	A ChIPComp object.
A	User-specified regions to fit the model. It is a bed file with three columns, named ("chr", "start", "end"), could be separated by space or tab.
threshold	User specified posterior probability threshold. Default is 1.

makeConf

Value

A object ChIPComp contains Column chr,start,end are the binding site genomic coordinate; Column ip_c(\#condition)_r(\#replicate) indicates ChIP counts in \#replicate in \#condition; Column ct_c(\#condition)_r(\#replicate) indicates smoothing control counts in \#replicate in \#condition; Column commonPeak 1s indicate common binding sites; Column prob.post is the posterior probability for each binding site. Column pvalue.wald is the pvalue of wald test for each binding site.

Author(s)

Hao Wu<hao.wu@emory.edu>, Li Chen <li.chen@emory.edu>

Examples

```
data(seqData)
seqData=ChIPComp(seqData)
```

makeConf

make configurations for experimental design written in csv sheet

Description

Make a list with two elements. The first element is a data frame containing two group comparison study information. The second element is the design matrix.

Usage

```
makeConf(sampleSheet)
```

Arguments

sampleSheet A csv sheet represents ChIP experiments design. It contains 6 columns,sampleID,condition,factor,ipR condition refers to treatment condition or cell line; factor refers to transcription factor or histone modification; ipReads is the ChIP sequence data in bam or bed format; ctReads is the control sequence data in bam or bed format; peaks is the called peaks from existing peak-calling software.

Value

A list with two elements. The first element is a data frame containing two group comparison study information. The second element is the design matrix.

Author(s)

Hao Wu<hao.wu@emory.edu>, Li Chen <li.chen@emory.edu>

Examples

```
confs=makeConf(system.file("extdata", "conf.csv", package="ChIPComp"))
conf=confs$conf
design=confs$design
```

makeCountSet

make differential binding sites data frame

Description

This is an utility function to create a data frame. The data frame contains binding sites merged by peaks from two conditions, count ChIP read counts, smoothing control counts for each candidate region, and indicate the common peaks from two conditions.

Usage

makeCountSet(conf,design,filetype,species,peak.center=FALSE,peak.ext=0,binsize=50,mva.span=c(1000,5

Arguments

conf	A data frame that represents the ChIP experiments information. It contains 6 columns, sampleID, condition, factor, ipReads, ctReads, peaks. condition refers to treatment condition or cell line; factor refers to transcription factor or histone modification; ipReads is the ChIP sequence data in bam or bed format; ctReads is the control sequence data in bam or bed format; peaks from existing peak-calling software.
design	Two column design matrix. The number of rows equals number of ChIP samples from two conditions. The first column are all 1s, which indicates intercept in regression model. The second column are 1s for one condition and 0s for another condition.
filetype	Two sequence file types are supported (bed or bam).
species	Two species are supported (hg19 or mm9). Other species are supported by spec- ifying other.
peak.center	This argument is coupled with peak.ext. Default is FALSE. The argument is used when centered regions of peaks are more of interest.
peak.ext	This argument is coupled with peak.center. Default is 0.
binsize	binsize in bp to calculate the smooth local lambda in poisson distribution. The default is 50bp.
mva.span	1 kb, 5 kb or 10 kb window centered at the peak location in the control sample.

Value

A object ChIPComp. Column chr,start,end are the binding site genomic coordinate; Column ip_c(\#condition)_r(\#replicate) indicates the ChIP counts in \#replicate in \#condition; Column ct_c(\#condition)_r(\#replicate) indicates the smoothing control counts in \#replicate in \#condition; Column ct_c(\#condition)_r(\#replicate) indicates the common binding sites.

4

plot.ChIPComp

Examples

```
conf=data.frame(
SampleID=1:4,
condition=c("Helas3","Helas3","K562","K562"),
factor=c("H3k27ac","H3k27ac","H3k27ac","H3k27ac"),
ipReads=system.file("extdata",c("Helas3.ip1.bed","Helas3.ip2.bed","K562.ip1.bed","K562.ip2.bed"),package="ChIP
ctReads=system.file("extdata",c("Helas3.ct.bed","Helas3.ct.bed","K562.ct.bed"),package="ChIPComp
peaks=system.file("extdata",c("Helas3.peak.bed","Helas3.peak.bed","K562.peak.bed","K562.peak.bed"),package="ChIPComp
peaks=system.file("extdata",c("Helas3.peak.bed","Helas3.peak.bed","K562.peak.bed","K562.peak.bed"),package="ChIPComp
peaks=system.file("extdata",c("Helas3.peak.bed","Helas3.peak.bed","K562.peak.bed","K562.peak.bed"),package="ChIPComp
peaks=system.file("extdata",c("Helas3.peak.bed","Helas3.peak.bed","K562.peak.bed","K562.peak.bed"),package="ChIPComp
peaks=system.file("extdata",c("Helas3.peak.bed","Helas3.peak.bed","K562.peak.bed","K562.peak.bed"),package="ChIPComp
peaks=system.file("extdata",c("Helas3.peak.bed","Helas3.peak.bed","K562.peak.bed","K562.peak.bed"),package="ChIPComp
peaks=system.file("extdata",c("Helas3.peak.bed","Helas3.peak.bed","K562.peak.bed","K562.peak.bed"),package="ChIPComp
peaks=system.file("extdata",c("Helas3.peak.bed","Helas3.peak.bed","K562.peak.bed","K562.peak.bed"),package="ChIPComp
oconf$condition=factor(conf$condition)
conf$factor=factor(conf$condition)
design=as.data.frame(lapply(conf[,c("condition","factor")],as.numeric))-1
design=as.data.frame(model.matrix(~condition,design))
countSet=makeCountSet(conf,design,filetype="bed", species="hg19",binsize=1000)
```

plot.ChIPComp	plot correlation between log ChIP read counts and smoothing control
	counts in common binding sites.

Description

plot correlation between log ChIP counts and smoothing control counts in common binding sites.

Usage

S3 method for class 'ChIPComp'
plot(x,...)

Arguments

х	A ChIPComp object.
	Other graphical parameters to plot

Value

Plot the correlation between ChIP sample and control sample

Author(s)

Hao Wu<hao.wu@emory.edu>, Li Chen <li.chen@emory.edu>

Examples

data(seqData)
plot(seqData)

print.ChIPComp

Description

Print top differential binding sites ranked by posterior probability in a decreasing order.

Usage

```
## S3 method for class 'ChIPComp'
print(x,topK=10,...)
```

Arguments

х	A ChIPComp object.
topK	top K differential binding sites. Default is 10.
	Other parameters to print

Value

Print differential binding sites ranked by posterior probability

Author(s)

Hao Wu<hao.wu@emory.edu>, Li Chen <li.chen@emory.edu>

Examples

```
data(seqData)
seqData=ChIPComp(seqData)
print(seqData)
```

seqData

A ChIPComp object.

Description

The object is sampled from 50 common binding sites between Helas3 and K562 cell lines for H3K27ac and 5 unique binding sites for each cell line.

Usage

data(seqData)

seqData

Value

A "ChIPComp" class object

Examples

data(seqData)

Index

* datasets
 seqData, 6
* package
 ChIPComp-package, 2

ChIPComp, 2 ChIPComp-package, 2

makeConf, 3
makeCountSet, 4

plot.ChIPComp, 5
print.ChIPComp, 6

seqData, <mark>6</mark>