
a�y: Custom Processing Methods (HowTo)

Laurent

April 30, 2024

Contents

1 Introduction 1

2 How-to 1

3 Examples 3

1 Introduction

This document describes brie�y how to customize the a�y package by adding one's
own processing methods. The types of processing methods are background correction,
normalization, perfect match correction and summary expression value computation.
We tried our best to make this as easy as we could, but we are aware that it is far from
being perfect. We are still working on things to improve them. Hopefully this document
should let you extend the package with supplementary processing methods easily.

As usual, loading the package in your R session is required.

R> library(affy) ##load the affy package

2 How-to

For each processing step, labels for the methods known to the package are stored in
variables.

> normalize.AffyBatch.methods()

[1] "constant" "contrasts" "invariantset" "loess"

[5] "methods" "qspline" "quantiles" "quantiles.robust"

> bgcorrect.methods()

1

variable for labels naming convention
bgcorrect.methods bg.correct.<label>

normalize.A�yBatch.methods normalize.A�yBatch.<label>
pmcorrect.methods pmcorrect.<label>

express.summary.stat.methods generateExprset.methods.<label>

Table 1: Summary table for the processing methods.

step argument(s) returns
background correction AffyBatch AffyBatch

normalization AffyBatch AffyBatch

pm correction ProbeSet a matrix of corrected PM
values (one probe per row,
one column per chip).

expression value a matrix of PM values a list of two elements exprs
and se.exprs

Table 2: Summary table for the processing methods.

[1] "bg.correct" "mas" "none" "rma"

> pmcorrect.methods()

[1] "mas" "methods" "pmonly" "subtractmm"

> express.summary.stat.methods()

[1] "avgdiff" "liwong" "mas" "medianpolish" "playerout"

We would recommend the use of the method normalize.methods to access the list of
available normalization methods (as a scheme for normalization methods that would go
beyond 'a�y' is thought).

> library(affydata)

> data(Dilution)

> normalize.methods(Dilution)

[1] "constant" "contrasts" "invariantset" "loess"

[5] "methods" "qspline" "quantiles" "quantiles.robust"

For each processing step, a naming convention exists between the method label and
the function name in R (see table 1). Each processing methods should be passed objects
(and return objects) corresponding to the processing step (see table 2).

Practically, this means that to add a method one has to

1. create an appropriate method with a name satisfying the convention.

2. register the method by adding the label name to the corresponding variable.

2

3 Examples

As an example we show how to add two simple new methods. The �rst one does pm

correction. The method subtract mm values to the pm values, except when the result is
negative. In this case the pm value remains unchanged.

We create a function using the label name subtractmmsometimes.

> pmcorrect.subtractmmsometimes <- function(object) {

+

+ ## subtract mm

+ mm.subtracted <- pm(object) - mm(object)

+

+ ## find which ones are unwanted and fix them

+ invalid <- which(mm.subtracted <= 0)

+ mm.subtracted[invalid] <- pm(object)[invalid]

+

+ return(mm.subtracted)

+ }

Once the method de�ned, we just register the label name in the corresponding variable.

> upDate.pmcorrect.methods(c(pmcorrect.methods(), "subtractmmsometimes"))

The second new method intends to be an robust alternative to the summary expres-
sion value computation avgdiff. The idea is to use the function huber of the package
MASS.

> huber <- function (y, k = 1.5, tol = 1e-06) {

+ y <- y[!is.na(y)]

+ n <- length(y)

+ mu <- median(y)

+ s <- mad(y)

+ if (s == 0)

+ stop("cannot estimate scale: MAD is zero for this sample")

+ repeat {

+ yy <- pmin(pmax(mu - k * s, y), mu + k * s)

+ mu1 <- sum(yy)/n

+ if (abs(mu - mu1) < tol * s)

+ break

+ mu <- mu1

+ }

+ list(mu = mu, s = s)

+ }

3

This method returns P.J. Huber's location estimate with MAD scale. You think this
is what you want to compute the summary expression value from the probe intensities.
What is needed to have as a processing method is a simple wrapper:

> computeExprVal.huber <- function(probes) {

+ res <- apply(probes, 2, huber)

+ mu <- unlist(lapply(res, function(x) x$mu))

+ s <- unlist(lapply(res, function(x) x$s))

+ return(list(exprs=mu, se.exprs=s))

+ }

> upDate.generateExprSet.methods(c(generateExprSet.methods(), "huber"))

From now the package is aware of the two new methods. . . in this session.
The code for the methods included in the package can be informative if you plan to

develop methods. An example that demonstrates how a normalization method can be
added is given by the function normalize.AffyBatch.vsn in the package vsn; see its
help �le.

4

	Introduction
	How-to
	Examples

