Package 'Summix'

May 2, 2024

Title Summix2: A suite of methods to estimate, adjust, and leverage substructure in genetic summary data

Version 2.10.0

Description This package contains the Summix2 method for estimating and adjusting for substructure in genetic summary allele frequency data. The function summix() estimates reference group proportions using a mixture model. The $\operatorname{adjAF}()$ function produces adjusted allele frequencies for an observed group with reference group proportions matching a target individual or sample. The summix_local() function estimates local ancestry mixture proportions and performs selection scans in genetic summary data.
License MIT + file LICENSE
Roxygen list(markdown $=$ TRUE $)$
RoxygenNote 7.2.3
Suggests rmarkdown, markdown, knitr, testhat ($>=3.0 .0$)
biocViews StatisticalMethod, WholeGenome, Genetics
VignetteBuilder knitr

Encoding UTF-8

Depends R (>=4.3)
Imports dplyr, nloptr, magrittr, methods, tibble, tidyselect, BEDASSLE, scales, visNetwork, randomcoloR
LazyData true
BugReports https://github.com/Bioconductor/Summix/issues
Config/testthat/edition 3
git_url https://git.bioconductor.org/packages/Summix
git_branch RELEASE_3_19
git_last_commit 46a2ac5
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-01
Author Audrey Hendricks [cre],
Price Adelle [aut],
Stoneman Haley [aut]
Maintainer Audrey Hendricks <audrey. hendricks@cuanschutz.edu>
Contents
adjAF 2
adjAF_calc 4
ancestryData 5
calc_effective_N 6
calc_scaledObj 6
doInternalSimulation 7
getNextEndPoint 8
getNextStartPoint 8
saveBlock 9
sizeGetNext 9
summix 10
summix_calc 12
summix_local 12
summix_network 15
testDiff 16
variantGetNext 17
Index 18
adjAF adjAF

Description

Adjusts allele frequencies for heterogeneous populations in genetic data given proportion of reference groups

Usage

$\operatorname{adjAF}($
data,
reference,
observed,
pi.target,
pi.observed,
adj_method = "average",
N_reference = NULL,
N_observed = NULL,
filter = TRUE
)

Arguments

data dataframe of unadjusted allele frequency for observed group, K reference group allele frequencies for N SNPs
reference character vector of the column names for K reference groups.
observed character value for the column name of observed data group
pi.target numeric vector of the mixture proportions for K reference groups in the target individual or group.
pi. observed numeric vector of the mixture proportions for K reference groups in the observed group.
adj_method user choice of method for the allele frequency adjustment: options "average" and "leave_one_out" are available. Defaults to "average".

N_reference numeric vector of the sample sizes for each of the K reference groups.
N_observed numeric value of the sample size of the observed group.
filter sets adjusted allele frequencies equal to 1 if >1, to 0 if $>-.005$ and <0, and removes adjusted allele frequencies $<-.005$.

Value

pi: table of input reference groups, pi.observed, and pi.target
observed.data: name of the data column for the observed group from which adjusted allele frequency is estimated
Nsnps: number of SNPs for which adjusted AF is estimated
adjusted.AF: data frame of original data with an appended column of adjusted allele frequencies
effective.sample.size: The sample size of individuals effectively represented by the adjusted allele frequencies

Author(s)

Adelle Price, adelle.price@cuanschutz.edu
Hayley Wolff, hayley.wolff@cuanschutz.edu
Audrey Hendricks, audrey.hendricks@cuanschutz.edu

References

https://github.com/hendriau/Summix2

See Also

https://github.com/hendriau/Summix2 for further documentation.

Examples

```
data(ancestryData)
adjusted_data<-adjAF(data = ancestryData,
    reference = c("reference_AF_afr", "reference_AF_eur"),
    observed = "gnomad_AF_afr",
    pi.target = c(1, 0),
    pi.observed = c(.85, .15),
    adj_method = 'average',
    N_reference = c(704,741),
    N_observed = 20744,
    filter = TRUE)
adjusted_data$adjusted.AF[1:5,]
```

adjAF_calc adjAF_calc

Description

Helper function for calculating allele frequencies for heterogeneous populations in genetic data given proportion of reference groups

Usage

adjAF_calc(data, reference, observed, pi.target, pi.observed)

Arguments

$$
\begin{array}{ll}
\text { data } & \begin{array}{l}
\text { dataframe of unadjusted allele frequency for observed group, K-1 reference } \\
\text { group allele frequencies for N SNPs }
\end{array} \\
\text { reference } & \begin{array}{l}
\text { character vector of the column names for K-1 reference groups. The name of } \\
\text { the last reference group is not included as that group is not used to estimate the } \\
\text { adjusted allele frequencies. }
\end{array} \\
\text { observed } & \begin{array}{l}
\text { character value for the column name of observed data group }
\end{array} \\
\text { pi.target } & \begin{array}{l}
\text { numeric vector of the mixture proportions for K reference groups in the target } \\
\text { sample or subject. The order must match the order of the reference columns } \\
\text { with the last entry matching the missing reference group. }
\end{array} \\
\text { pi.observed } \quad \begin{array}{l}
\text { numeric vector of the mixture proportions for K reference groups for the ob- } \\
\text { served group. The order must match the order of the reference columns with the } \\
\text { last entry matching the missing reference group. }
\end{array}
\end{array}
$$

Value

pi: table of input reference groups, pi.observed, and pi.target
observed.data: name of the data column for the observed group from which adjusted allele frequency is estimated
Nsnps: number of SNPs for which adjusted AF is estimated
adjusted.AF: data frame of original data with an appended column of adjusted allele frequencies

```
ancestryData ancestryData
```


Description

Sample dataset containing reference and observed allele frequencies to be used for examples within the Summix package.

Usage

ancestryData

Format

A data frame with 1000 rows (representing individual SNPs) and 10 columns:
POS Position of SNP on given chromosome.
REF Reference allele
ALT Alternate allele
CHROM Chromosome
reference_AF_afr Allele frequency column of the African reference ancestry.
reference_AF_eas Allele frequency column of the East Asian reference ancestry.
reference_AF_eur Allele frequency column of the European reference ancestry.
reference_AF_iam Allele frequency column of the Indigenous American reference ancestry.
reference_AF_sas Allele frequency column of the South Asian reference ancestry.
gnomad_AF_afr Allele frequency column of the observed gnomAD v3.1.2 African/African American population.

Source

https://gnomad.broadinstitute.org/downloads\#v3

```
calc_effective_N calc_effective_N
```


Description

Helper function to calculate effective sample size for the group that is left out when estimating the adjusted allele frequencies in each adjAF function iteration.

```
Usage
    calc_effective_N(N_reference, N_observed, pi.target, pi.observed)
```


Arguments

N_reference numeric vector of the sample sizes of each K reference groups.
N_observed numeric value of the sample size of the observed group.
pi.target numeric vector of the mixture proportions for K reference groups in the target sample or subject. The order must match the order of the reference columns with the last entry matching the missing reference group.
pi.observed numeric vector of the mixture proportions for K reference groups for the observed group. The order must match the order of the reference columns with the last entry matching the missing reference group.

Value

N_effective: effective sample size for the group that is left out when estimating the adjusted allele frequencies in each adjAF function iteration.

```
calc_scaledObj calc_scaledObj
```


Description

Helper function to calculate new scaled loss function using weighted AF bin objectives

Usage

calc_scaledObj(data, reference, observed, pi.start)

Arguments

data a dataframe of the observed and reference allele frequencies for N genetic variants. See data formatting document at https://github.com/hendriau/Summix for more information. Uses the same input data as summix.
reference a character vector of the column names for the reference groups.
observed a string that is the column name for the observed group.
pi.start Length K numeric vector of the starting guess for the reference group proportions. If not specified, this defaults to $1 / \mathrm{K}$ where K is the number of reference groups.

Value

numeric value that is the scaled objective per 1000 SNPs

```
doInternalSimulation doInternalSimulation
```


Description

Helper function to get the within block se using re-simulation

Usage

doInternalSimulation(windows, data, reference, observed, nRefs)

Arguments

windows is a dataframe with the Start_Pos and End_Pos
data is the original chromosome data
reference is a list with the names of the columns with references
observed a character value that is the column name for the observed group
nRefs is a vector the same lengths as reference with the number of individuals in each reference population

```
getNextEndPoint getNextEndPoint
```


Description

Helper function: algorithm to get next end point in basic window algorithm; will find first point that is at least window size away from start

Usage

getNextEndPoint(data, start, windowSize)

Arguments

data the input dataframe subset to the chromosome
start index of the current start point
windowSize the window size (in bp or variants)

Value

index of end point of window

```
    getNextStartPoint getNextStartPoint
```


Description

Helper function: algorithm to get next start point; will pick the point that provides approx. the specified amount of overlap, but not more; if there are only two variants in the previous block, will jump new start point to the previous end point

Usage

getNextStartPoint(data, start, end, overlap)

Arguments

data	the input dataframe subset to the chromosome
start	the current index of start point
end	the current index of end point
overlap	the desired amount of window overlap (in bp or variants)

Value

returns index of new start point

| saveBlock saveBlock |
| :--- | :--- |

Description

Helper function to save one block to results

Usage

saveBlock(data, start, end, props, results)

Arguments

data	the input dataframe subsetting to just the chromosome
start	index of start of block
end	index of the end of block
props	substructure proportions for the block returned from summix
results	current results dataframe

 sizeGetNext sizeGetNext

Description

Helper function to get starting end point that is a minimum distance (in bases) from start point; uses indices NOT position numbers

Usage

sizeGetNext(positions, start, minSize)

Arguments

positions	list of positions of variants
start	index of the current start position
minSize	integer defining the minimum size in bp of the window

Value

the new end point index

```
summix
summix
```


Description

Estimating mixture proportions of reference groups from large (N SNPs $>10,000$) genetic AF data.

Usage

```
summix(
    data,
    reference,
    observed,
    pi.start = NA,
    goodness.of.fit = TRUE,
    override_removeSmallRef = FALSE,
    network = FALSE,
    N_reference = NA,
    reference_colors = NA
    )
```


Arguments

data | A dataframe of the observed and reference allele frequencies for N genetic vari- |
| :--- |
| ants. See data formatting document at https://github.com/hendriau/Summix for |
| more information. |

reference
A character vector of the column names for the reference groups.
observed

pi.start | A character value that is the column name for the observed group. |
| :--- |
| Length K numeric vector of the starting guess for the reference group propor- |
| tions. If not specified, this defaults to $1 / \mathrm{K}$ where K is the number of reference |
| groups. |

Value

A data frame with the following columns:
goodness.of.fit: scaled objective loss from slsqp() reflecting the fit of the reference data. Values between 0.5-1.5 are considered moderate fit and should be used with caution. Values greater than 1.5 indicate poor fit, and users should not perform further analyses using Summix.
iterations: number of iterations for SLSQP algorithm
time: time in seconds of SLSQP algorithm
filtered: number of genetic variants not used in the reference group mixture proportion estimation due to missing values.

K columns of mixture proportions of reference groups input into the function

Author(s)

Adelle Price, adelle.price@cuanschutz.edu
Hayley Wolff, hayley.wolff@cuanschutz.edu
Audrey Hendricks, <audrey. hendricks@cuanschutz.edu>

References

https://github.com/hendriau/Summix2

See Also

https://github.com/hendriau/Summix2 for further documentation. slsqp function in the nloptr package for further details on Sequential Quadratic Programming https://www.rdocumentation. org/packages/nloptr/versions/1.2.2.2/topics/slsqp

Examples

```
# load the data
data("ancestryData")
# Estimate 5 reference ancestry proportion values for the gnomAD African/African American group
# using a starting guess of . }2\mathrm{ for each ancestry proportion.
summix(data = ancestryData,
    reference=c("reference_AF_afr",
            "reference_AF_eas",
            "reference_AF_eur",
            "reference_AF_iam",
            "reference_AF_sas"),
        observed="gnomad_AF_afr",
        pi.start = c(.2, .2, .2, .2, .2),
        goodness.of.fit=TRUE)
```

```
summix_calc summix_calc
```


Description

Helper function for estimating mixture proportions of reference groups from large (N SNPs $>10,000$) genetic AF data, using slsqp to solve for least square difference

Usage

summix_calc(data, reference, observed, pi.start = NA)

Arguments

data A dataframe of the observed and reference allele frequencies for N genetic variants. See data formatting document at https://github.com/hendriau/Summix for more information.
reference A character vector of the column names for the reference groups.
observed A character value that is the column name for the observed group.
pi.start Length K numeric vector of the starting guess for the reference group proportions. If not specified, this defaults to $1 / \mathrm{K}$ where K is the number of reference groups.

Value

data frame with the following columns
objective: least square value at solution
iterations: number of iterations for SLSQP algorithm
time: time in seconds of SLSQP algorithm
filtered: number of SNPs not used in estimation due to missing values
K columns of mixture proportions of reference groups input into the function

```
summix_local
summix_local
```


Description

Estimates local substructure mixture proportions in genetic summary data; Also performs a selection scan (optional) that identifies potential regions of selection along the given chromosome.

Usage

```
summix_local(
        data,
        reference,
        observed,
        goodness.of.fit = TRUE,
        type = "variants",
        algorithm = "fastcatch",
        minVariants = 0,
        maxVariants = 0,
        maxWindowSize = 0,
        minWindowSize = 0,
        windowOverlap = 200,
        maxStepSize = 1000,
        diffThreshold = 0.02,
        NSimRef = NULL,
        override_fit = FALSE,
        override_removeSmallAnc = FALSE,
        selection_scan = FALSE,
        position_col = "POS"
)
```


Arguments

\(\left.$$
\begin{array}{ll}\text { data } & \begin{array}{l}\text { a data frame of the observed group and reference group allele frequencies for N } \\
\text { genetic variants on a single chromosome. Must contain a column specifying the } \\
\text { genetic variant positions. }\end{array} \\
\text { reference } & \begin{array}{l}\text { a character vector of the column names for K reference groups. } \\
\text { observed } \\
\text { goodness.of.fit }\end{array}
$$

an option to override the default scaled objective to return the raw loss from

slsqp\end{array}\right]\)| user choice of how to define window size; options "variants" and "bp" are avail- |
| :--- |
| able where "variants" defines window size as the number of variants in a given |
| window and "bp" defines window size as the number of base pairs in a given |
| window. Default is "variants". |

maxWindowSize	Used if type = "bp". A numeric value that defines the maximum allowed window size by the number of base pairs in a given window.
minWindowSize	Used if algorithm = "fastcatch" and type = "bp". A numeric value that specifies the minimum number of base pairs allowed to define a given window.
windowOverlap	Used if algorithm = "windows". A numeric value that defines the number of variants or the number of base pairs that overlap between the given sliding win- dows. Default is 200.
maxStepSize	a numeric value that defines the maximum gap in base pairs between two con- secutive genetic variants within a given window. Default is 1000.
diffThresholdUsed if algorithm = "fastcatch". A numeric value that defines the percent differ- ence threshold to mark the end of a local substructure block. Default is 0.02.	
NSimRefUsed if f selection_scan = TRUE. A numeric vector of the sample sizes for each of the K reference groups that is in the same order as the reference parameter. This is used in a simulation framework that calculates within local substructure block standard error.	
override_fitdefault is FALSE. If set as TRUE, the user will override the auto-stop of sum- mix_local() that occurs if the global goodness of fit value is greater than 1.5 (indicating a poor fit of the reference data to the observed data).	
override_removeSmallAnc	
default is FALSE. If set as TRUE, the user will override the automatic removal	
of reference ancestries with <2\% global proportions - this is not recommended.	

Value

data frame with a row for each local substructure block and the following columns:
goodness.of.fit: scaled objective reflecting the fit of the reference data. Values between 0.5-1.5 are considered moderate fit and should be used with caution. Values greater than 1.5 indicate poor fit, and users should not perform further analyses using summix
iterations: number of iterations for SLSQP algorithm
time: time in seconds of SLSQP algorithm
filtered: number of SNPs not used in estimation due to missing values
K columns of mixture proportions of reference groups input into the function nSNPs: number of SNPs in the given local substructure block

Author(s)

Hayley Wolff (Stoneman), hayley.wolff@cuanschutz.edu
Audrey Hendricks, <audrey. hendricks@cuanschutz.edu>

References

https://github.com/hendriau/Summix2

See Also

https://github.com/hendriau/Summix2 for further documentation.

Examples

```
data(ancestryData)
results <- summix_local(data = ancestryData,
    reference = c("reference_AF_afr",
                            "reference_AF_eas",
                            "reference_AF_eur",
                            "reference_AF_iam",
                            "reference_AF_sas"),
    NSimRef = c(704,787,741,47,545),
    observed="gnomad_AF_afr",
    goodness.of.fit = TRUE,
    type = "variants",
    algorithm = "fastcatch",
    minVariants = 150,
    maxVariants = 250,
    maxStepSize = 1000,
    diffThreshold = .02,
    override_fit = FALSE,
    override_removeSmallAnc = TRUE,
    selection_scan = FALSE,
    position_col = "POS")
print(results$results)
```

summix_network
summix_network

Description

Helper function to plot the network diagram of estimated substructure proportions and similarity between reference groups

Usage

summix_network(data = data, sum_res = sum_res, reference = reference, N_reference = N_reference, reference_colors = reference_colors
)

Arguments

data A dataframe of the observed and reference allele frequencies for N genetic variants. See data formatting document at https://github.com/hendriau/Summix for more information.
sum_res The resulting data frame from the summix function
reference A character vector of the column names for the reference groups.
N_reference numeric vector of the sample sizes for each of the K reference groups.
reference_colors
A character vector of length K that specifies the color each reference group node in the network plot. If not specified, this defaults to K random colors.

Value

network diagram with nodes as estimated substructure proportions and edges as degree of similarity between the given node pair

```
testDiff testDiff
```


Description

Helper function to determine whether reference group has changed for fast/catchup window algorithm

Usage

testDiff(last, current, threshold $=0.01$)

Arguments

last	substructure proportions of block returned from summix
current	substructure proportions of block returned from summix
threshold	if applicable the threshold for determining change point

Value

true if passes threshold, false if not

```
variantGetNext variantGetNext
```


Description

Helper function to get starting end point that is a minimum distance (in variants) from start point; uses indices NOT position numbers

Usage

variantGetNext(positions, start, minVariants)

Arguments

positions	list of positions of variants
start	index of the current start position
minVariants	integer defining the minimum size in number of variants of the window

Value

the new end point index

Index

```
* admixture,
        adjAF,2
        summix, 10
        summix_local, 12
* ancestry
        summix_local, 12
* datasets
        ancestryData,5
* distribution,
        adjAF,2
        summix, 10
        summix_local, 12
* genetics,
        adjAF,2
        summix, 10
        summix_local, 12
* local
        summix_local, 12
* mixture
        adjAF,2
        summix, 10
        summix_local, 12
* population
        adjAF,2
        summix, 10
        summix_local, 12
* stratification,
        summix_local, 12
* stratification
        adjAF,2
        summix, 10
adjAF,2
adjAF_calc,4
ancestryData,5
calc_effective_N,6
calc_scaledObj,6
doInternalSimulation, }
```

getNextEndPoint, 8
getNextStartPoint, 8
saveBlock, 9
sizeGetNext, 9
slsqp, 11
summix, 10
summix_calc, 12
summix_local, 12
summix_network, 15
testDiff, 16
variantGetNext, 17

