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Abstract

The following example illustrates a standard use case of the BEAT package, which is

used for processing and modeling methylated and unmethylated counts of CG positions from

Bisul�te sequencing (BS-Seq) for determination of epimutation rates, i.e. the rate of change

in DNA methylation status at CG sites between a reference multi-cell sample and single-cell

samples.

The input for the package BEAT consists of count data in the form of counts for unmethy-

lated and methylated cytosines per genomic position, which are then grouped into genomic

regions of su�cient coverage in order to allow for low-coverage samples to be analyzed. Methy-

lation rates of each region are then modeled using a binomial mixture model in order to adjust

for experimental bias, which arises mainly out of incomplete bisul�te conversion (resulting in

unmethylated CG positions falsely appearing to be methylated) and sequencing errors (re-

sulting in random errors in methylation status, including methylated CG positions falsely

appearing as unmethylated).

This vignette explains the use of the package. For a detailed exposition of the statistical

method, please see our upcoming paper.
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1 Preamble

1.1 Biological Background

Bisul�te sequencing (BS-Seq) is a sequence-based method to accurately detect DNA methylation
at speci�c loci, which involves treating DNA with sodium bisul�te [1]. Bisul�te conversion of
unmethylated cytosines into uracil is a relatively simple chemical reaction which has now become
a standard in DNA methylation pro�ling. The key advantage of this method is accuracy, as the
degree of methylation at each cytosine can be quanti�ed with great precision [2].
Most currently available techniques for determination of DNA methylation can only measure av-
erage values obtained from cell populations as a whole, requiring at least 30 ng of DNA, i.e. the
equivalent of about 6000 cells [3]. Since these population approaches cannot account for cell- and
position-speci�c di�erences in DNA methylation, which are termed epimutations [4], they are un-
suitable for the characterization of cellular heterogeneity. However, this heterogeneity plays an
important role in di�erentiation and development, stem cell re-programming, in diseases such as
cancer and aging [5]. Developing single-cell approaches for measuring DNA methylation is not
only be vital to fully understand individual cell-speci�c changes and complexity of tissue micro-
environments, but also for the analysis of clinical samples, such as circulating tumor cells or needle
biopsies, when the amount of material is often limited. With the BEAT package, we present a
pipeline for the computational analysis part of such single-cell BS-Seq experiments.

1.2 Package Functionality

This vignette will illustrate the complete work �ow of a DNA methylation analysis, which includes
model-based estimation of regional methylation rates from observed BS-Seq methylation counts,
calling of methylation status, and the comparison of samples to determine regional di�erences
in methylation status, i.e., epimutation calling. These three steps are implemented by the three
public functions of BEAT, namely positions_to_regions, generate_results and epimutation_calls,
respectively. The functionality of BEAT will be demonstrated using sample data consisting of the
�rst chromosome of mouse liver hepatocytes, one reference sample ('reference.positions.csv') and
one single-cell sample to compare against ('sample.positions.csv') The main challenges in DNA
methylation analysis are bias correction, modeling of sampling variance (shot noise due to low
count numbers) and assessing the signi�cance of changes.

2 Input format

The package BEAT expects as input one csv per sample with counts for unmethylated and methy-
lated cytosines per genomic position. Such data can be obtained from the output of BS-Seq map-
ping tools such as bismark (see http://www.bioinformatics.babraham.ac.uk/projects/bismark/)
followed by simple script-based data processing. BS-Seq data for methylated- and unmethylated
counts per genomic position needs to be formatted into a data.frame object with the columns: 'chr',
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'pos', 'meth', 'unmeth' (signifying chromosome name, chromosomal position, as well as methylated-
and unmethylated cytosine counts at that chromosomal position).

> library(BEAT)

> localpath <- system.file('extdata', package = 'BEAT')

> positions <- read.csv(file.path(localpath, "sample.positions.csv"))

> head(positions)

chr pos meth unmeth

1 chr1 100001310 1 0

2 chr1 100002648 0 1

3 chr1 100002688 0 1

4 chr1 100002802 1 0

5 chr1 100004564 0 1

6 chr1 100004606 0 1

3 Con�guration and parameters

BEAT can process multiple samples at a time. For each sample speci�ed under 'sampNames', the
package BEAT reads this data frame from a csv from the working directory, which is speci�ed
by the parameter 'localpath'. The �le should be called <samplename>.positions.csv and should
contain the aforementioned csv under the name 'positions'. Result �les written by BEAT will
have the names <samplename>.results.RData. A distinction is made between two samples whose
methylation status is compared against that of the reference. For each sample, the assignment of
reference or non-reference status to samples is done via the vector 'is.reference', which is indexed
by the 'sampNames' vector and contains one TRUE entry for the reference and one to many
FALSE entries for samples to be compared against the reference. Our example data set contains
two �les, one named 'reference' for a reference consisting of a mixture of cells, and one named
'sample' for a single-cell sample to be compared against the reference.

> sampNames <- c('reference','sample')

> sampNames

[1] "reference" "sample"

> is.reference <- c(TRUE, FALSE)

For the modeling part of BEAT, Bisul�te conversion rates have to be speci�ed per sample using
the vector 'convrates', which is indexed by 'sampNames'. These conversion rates need to be
speci�ed manually by the user. Practically, for mammalian somatic cell samples, these rates can
be estimated for each sample by looking at the non-CpG methylation rate per sample and using
the inverse value as estimated CpG methylation rate, because non-CpG methylation in these types
of cells is expected to be near zero. For example, if non-CpG methylation in a sequenced sample
was measured to be 0.1 then BS-conversion rate for that sample would be set to 0.9 when near-zero
non-CpG methylation can be expected, as is the case in somatic mammalian cells.

> pplus <- c(0.2, 0.5)

> convrates <- 1 - pplus

3



The aforementioned values are then set in a parameter object, which is used throughout the further
work �ow in this package. It provides the following additional options:

� 1-convrates represents the fraction of unmethylated counts that are falsely called as methy-
lated due to incomplete BS-conversion. This parameter is also referred to as 'pplus' in the
statistical model.

� 'pminus' represents the fraction of methylated counts that are falsely called as unmethylated.

� 'regionSize' is the size of regions into which genomic positions are grouped. In single cells,
the number of positions with su�cient coverage for reliable statistical predictions may be
very small. Therefore, our pipeline applies epimutation calling to regions instead of single
positions. Single positions are pooled into regions of appropriate size, i.e., regions containing
su�ciently many CpG positions that have a positive read count number in both the reference
and the single cell sample (.shared. CpG positions). Our method has then su�cient power
to reliably detect epimutation events a�ecting these regions. For a detailed description of
pooling positions into regions, see section 4.

� After pooling CG positions to regions, there may still be regions with low count numbers that
do not allow for reliable downstream analysis. Regions with less than 'minCounts' counts
will be removed from further processing, potentially saving signi�cant processing time in
further analysis steps.

The following parameters are of minor importance, for a �rst analysis, they can be left at their
pre-set values.

� 'verbose' is an option that prints additional information during computation when set to
TRUE. 'computeRegions' is an option that will recompute the regions from given positional
input if set to TRUE; otherwise, it will depend on existing region �les already present in the
'localpath' directory (�le names ending in regions.RData).

� 'computeMatrices' is an option that will recompute the model data from given regions if set
to TRUE; otherwise, it will depend on existing model output �les already present in the
'localpath' directory (�le names ending in convMat.RData and results.RData.

� 'writeEpicallMatrix' is an option that can be set to TRUE to generate epimutation calling
output in the form of matrices (one row per genomic position, output format is CSV).

> params <- makeParams(localpath, sampNames, convrates,

+ is.reference, pminus = 0.2, regionSize = 10000, minCounts = 5)

> params

$localpath

[1] "/tmp/RtmpWtQuum/Rinst23889a1987c640/BEAT/extdata"

$sampNames

[1] "reference" "sample"

$pplus
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reference sample

0.2 0.5

$is.reference

reference sample

TRUE FALSE

$pminus

reference sample

0.2 0.2

$regionSize

[1] 10000

$minCounts

[1] 5

$verbose

[1] TRUE

$computeRegions

[1] TRUE

$computeMatrices

[1] TRUE

$writeEpicallMatrix

[1] TRUE

4 Pooling of CG counts into regions

The supplied methylation counts for individual CG positions are grouped into regions by BEAT
for modeling according to the speci�ed 'regionSize' and 'minCount' parameters. The func-
tion positions_to_regions takes as input the samples as csv objects located under <sample-
name>.positions.csv in the working directory, as discussed above. The function saves a list of
data.frames of resulting counts per genomic regions in the current working directory under <sam-
plename>.regions.<regionSize>.<minCounts>.RData, with samplename, regionSize and minCounts
replaced by the sample name and the respective parameters given. Each data.frame object contains
a list of genomic regions covered by the given samples, consisting of the columns: 'chr', 'start',
'stop', 'meth', 'unmeth' (signifying chromosome name, start of region by chromosomal position,
end of region by chromosomal position, as well as methylated- and unmethylated cytosine counts
at that chromosomal position).

> positions_to_regions(params)

Sample: reference.positions.csv regionSize: 10000 minCounts: 5

Processed reference.positions.csv, yielding 16728 regions of 10000 nt
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Sample: sample.positions.csv regionSize: 10000 minCounts: 5

Processed sample.positions.csv, yielding 15948 regions of 10000 nt

5 Statistical modeling

Most of details about the statistical model explained in this section is also explained in our upcom-
ing paper on the computational analysis for single-cell BS-Seq analysis. We repeat the statistical
details in this section for the sake of completeness of the description of the computational and
statistical details of our pipeline. Taking as input the region-based counts computed in the step
above, the underlying model of the BEAT package then computes corrected counts, taking into
account especially incomplete conversion rates (taken from the 'convrates' parameter) and the
estimated sequencing error (speci�ed as the 'pminus' parameter). The model is described brie�y
as follows.
We have derived a Bayesian statistical model that gives detailed information about the methylation
rate in a region of multiple CpG positions which is described below. Apart from estimating the
methylation rate, it provides measures of con�dence for this estimate, it can test regions for high
or low methylation. On the basis of of these tests it is later possible to give a precise de�nition
of a regional epimutation event. For multi-cell samples, we assume that all counts at a single
CpG position were obtained from pairwise di�erent bisul�te converted DNA template strands
and represent independent observations. This certainly holds in good approximation, because the
number of available DNA template strands typically supersedes the read coverage at this position
by far. For single cell samples, we encounter the opposite situation: There are at most two template
DNA strands available, and for many CpG positions this number is reduced further through
DNA degradation. Multiple reads covering one CpG position are therefore highly dependent. We
combine multiple counts at one position to one single (non-)methylation call. For di�erent CpG
position, these calls are then independent observations. First, �x one region, i.e. some set of
CpG positions. The number of counts at a given position is the number of reads mapping to that
position. Let n denote the total number of counts at all CpG positions in the given region, and
let k (respectively n − k) of them indicate methylation (respectively non-methylation). Let r be
the (unknown) methylation rate at the given position. Then, assuming independence of the single
counts as mentioned above, the actual number j of counts originating from methylated CpGs in
this region follows a binomial distribution,

P (j | n, r) = Bin(j;n, r) (1)

Let the false positive rate p+ be the global rate of false methylation counts, which is identical to the
non-conversion rate of non-methylated cytosines. Conversely, let the false negative rate p− be the
global rate of false non-methylation counts, which is identical to the inappropriate conversion rate
of methylated cytosines. One can �nd an upper bound for p+ by considering all methylation counts
at non-CpG positions as false positives (resulting from non-conversion of presumably unmethylated
cytosines). This leads to an estimate of p+ = 0.2, 0.51, 0.41, 0.44, 0.39 in the experiments Liver,
H1, H2, H3 and H4, respectively. Bear in mind that in single cell bisul�te experiments, the limited
DNA amount requires a particularly mild bisul�te treatment, which increases the false positive
rate relative to standard bisul�te sequencing procedures. In the literature, false negative rates were
not described, an estimate of p− = 0.01 is reported9. We chose a conservative value of p− = 0.2,
which takes into account potential errors originating from mapping artifacts or sequencing errors.
Due to failed or inappropriate conversion, the number k of counts indicating methylation di�ers
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from the actual number j of counts originating from methylated CpGs. Given the true number
of methylation counts j, the the observed methylation counts k are the sum of the number m of
correctly identi�ed methylations and the number k−m if incorrectly identi�ed methylations (false
positives). Hence, the probability distribution of k is a convolution of two binomial distributions,

P (k | j, n; p+, p−) =
k∑

m=0

P (m | j, 1− p−) · P (k −m | n− j, p+)

=
k∑

m=0

Bin(m; j, 1− p−)︸ ︷︷ ︸
=:C1

m,j

·Bin(k −m;n− j, p+)︸ ︷︷ ︸
=:C2

n−j,k−m

(2)

In (2), we use the convention that Bin(m; j, p) = 0 whenever m > j. Thus, given n reads, k
methylation counts, the likelihood function for r is a mixture of Bionomial distributions,

P (k | n, r; p+, p−) =
n∑

j=0

P (k, j | n, r, p+, p−)

=
n∑

j=0

P (k | j, n, r, p+, p−) · P (j | n, r, p+, p−)

=
n∑

j=0

P (k | j, n, p+, p−) · P (j | n, r)

(1,2)
=

n∑
j=0

k∑
m=0

C1
m,jC

2
n−j,k−m ·Bin(j;n, r) (3)

In our Bayesian approach, we furthermore need to specify a prior for r to calculate the posterior
distribution of r. Recall the beta distribution(s), which is a 2-parameter family of continuous
probability distributions de�ned the unit interval [0, 1],

Beta(r;α, β) ∝ rα−1(1− r)β−1 , for α, β > 0, r ∈ (0, 1) ,

We assume that a fraction of λm postions are essentially methylated, i.e., and that their rate r
follows a Beta(r;α = rm · wm, βm = (1− rm) · wm) distribution, having an expectation value for r
of αm

αm+βm
= rm. Here, we set rm = 0.7. The additional parameter wm weights the strength of the

prior relative to the strength of the likelihood. Since (the con�dence into/ the knowledge about)
our prior distribution of methylation rates is rather weak, we want our procedure to be strongly
data-driven, therefore we choose a low wm, wm = 0.5. A fraction of λu = 1 − λm is essentially
unmethylated, and their rate is assumed to follow a Beta(r;αu = ru · wu, βu = (1 − ru) · wu)
distribution, having an expectation value for r of αu

αu+βu
= ru, where we set ru = 0.2 and wu = 0.5.

Thus, the prior distribution π(r) is a 2-Beta mixture distribution,

π(r;αm, βm, αu, βu, λm) =
∑

s∈{m,u}

λsBeta(r;αs, βs) (4)

The pragmatic reason for choosing a Beta mixture as a prior distribution is the fact that the Beta
distribution is the conjugate prior of the Binomial distribution15, such that for some normalizing
constant Dα,β

j,n ,
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Figure 1: Plot of the likelihood functions for three di�erent observations (k, n) (left), the Beta
mixture prior distribution (middle) and the corresponding three posteriors (right). The number n
of counts is set to 8, of which k = 2 (blue), k = 5 (grey) and k = 7 (red) are methylation counts.
The unknown parameter p+was determined empirically from the false non-CpG methylation, which
re�ects the incomplete conversion rate, as follows: L1: 0.2, H1: 0.51, H2: 0.41, H3: 0.44, H4: 0.39.
p−was set to 0.2 as a very robust choice. The beta mixture prior was set as described in the text.

Bin(j;n, r) ·Beta(r;α, β) = Dα,β
j,n ·Beta(r; ; j + α, n− j + β) (5)

By virtue of Equation (5), we can write down the posterior distribution of r analytically (Equation
7). This has the advantage that we can answer all questions on the posterior distribution of r
e�ciently and up to an arbitrary precision. E�ciency is an issue, because we need to calculate
posterior distributions for all regions, which can easily amount to millions.

P (r | k, n; p+, p−;αm, βm, αu, βu, λm)

= N−1 · P (k | n, r; p+, p−) · π(r;αm, βm, αu, βu) (6)

(3,4)
= N−1 ·

n∑
j=0

k∑
m=0

C1
m,jC

2
n−j,k−m ·Bin(j;n, r) ·

∑
s∈{m,u}

λsBeta(r;αs, βs)

(5)
= N−1 ·

n∑
j=0

k∑
m=0

C1
m,jC

2
n−j,k−m ·

 ∑
s∈{m,u}

λsD
αs,βs

j,n Beta(r; j + αs, n− j + βs)

 (7)

In the above equation, N is a normalization constant,

N =
n∑

j=0

k∑
m=0

C1
m,jC

2
n−j,k−m ·

∑
s

λsD
αs,βs

j,n (8)

The ingredients for the construction of the posterior distribution are visualized in Figure (1).

5.1 Methylation statistics derived from read counts

For each region under consideration, we obtain an individual posterior distribution P (r | k, n, p+, p−).
With this posterior at hand, it is an easy task to calculate the expected methylation rate r̂ in the
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corresponding region,

r̂ =

ˆ 1

0

r · P (r | k, n, p+, p−) dr (9)

It is customary to provide a Bayesian measure of uncertainty of this estimate, a so-called credible
interval. A credible interval is an interval which contains the estimate (r̂) and in which a prescribed
probability mass of the posterior is located. One can construct a 90% credible interval [m,M ] as
the shortest interval containing r̂ such that P (r ∈ [n,M ] | k, n, p+, p−) = 0.9. Moreover, we call a
region highly methylated if

P (r > 0.7 | k, n, p+, p−) > c (10)

for some stringency level c which we set to 0.75 here. The false negative methylation calling
rates were set to p− = 0.1 for all samples, and the false positive calling rates were determined
by p+ = 1 − CH methylation rate for each sample separately. A region is said to show increased

methylation if

P (r > 0.5 | k, n, p+, p−) > c

Analogously, a region is called sparsely methylated if

P (r < 0.3 | k, n, p+, p−) > c

and a region with decreased methylation satis�es

P (r < 0.5 | k, n, p+, p−) > c (11)

By de�nition, any highly methylated region has increased methylation, and every sparsely methy-
lated region shows decreased methylation. For c > 0.5, high and sparse methylation calls are
mutually exclusive. Regions that are neither highly nor sparsely methylated are called ambiguous.
The time-critical step is the calculation of the region-speci�c posterior distribution P (r | k, n, p+, p−),
and the quantities related to it (Equations 9-11). Since k and n vary for each region, and the num-
ber of regions is large, we save a lot of time by pre-calculating all required quantities for a set of
values n = 1, ..., 45, k = 0, ..., n. The statistics for, on average, 80% of all regions can then be
looked up and do not need to be re-computed. The running times for d = 250, 500, ... on the mouse
genome took less than a minute plus t = 25 min for the pre-computing of each of the �ve samples,
which did not vary substantially with region size.
The model generates posterior probabilities for each pair of methylated and total count values given
the conversion rate and sequencing error. These posteriors are saved in the working directory for
each sample in an R object under the �le name
<samplename>.convMat.<pminus>.<pplus>.RData, while the corrected counts along with cor-
rected methylation rate estimates and other model data are saved as data.frames under the �le
name <samplename>.results.<pminus>.<pplus>.RData, where pminus and pplus are replaced
by the respective parameters. For each sample, the model computes a data.frame consisting of
the columns: 'chr', 'start', 'stop', 'meth', 'unmeth', 'methstate' and 'methest', signifying chro-
mosome name, start of region by chromosomal position, end of region by chromosomal position,
methylated- and unmethylated cytosine counts at that chromosomal position, methylation state
(which is 1 for regions called methylated, −1 for unmethylated regions, and 0 for regions that are
neither) and methylation estimate (i.e., the model-estimated methylation level for that region).
The object contains further columns which are used for internal procedures and irrelevant for the
package user.
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Figure 2: Illustration of the the results of our statistical modeling applied to regions of size d = 1000
in the Liver sample. In each plot, n (on the x-axis) denotes the total number of counts mapping
to that region, of which k (on the y-axis) are counts indicating methylation. Left: Using the
Liver-speci�c estimates of the false positive rate p+ = 0.2 and the false negative rate p− = 0.1 and
the methylation prior in Equation (4), we obtain for each admissible pair (k, n) a methylation rate
estimates r̂ from Equation (9). Colors correspond to methylation rate, ranging from deep blue
(zero methylation) to deep red (full methylation). Middle: The red respectively blue area de�nes
the pairs (k, n) which satisfy our criteria for high respectively sparse methylation. Right: The red
respectively blue area de�nes the pairs (k, n) which satisfy our criteria for increased respectively
decreased methylation. Note that strict methylation calls are only made when at least n = 5
counts were observed.

> generate_results(params)

Sample: reference

Generating conversion matrix...

Adding methylation states and 9 matrices...

Sample: sample

Generating conversion matrix...

Adding methylation states and 9 matrices...

6 Epimutation calling

Finally, epimutations are called by comparing two results objects from the previous step.
The function 'epimutation_calls' compares one sample to a reference sample. A methylating
epimutation is called for each genomic region common to both samples when it was called as
unmethylated in the reference and as methylated in the other sample by the model. Accord-
ingly, the region is called as demethylating epimutation when called as methylated in the ref-
erence and as unmethylated in the other sample. Epimutation rates are then computed as the
frequency of epimutation events in relation to the total regions shared between each sample and
the reference. The resulting epimutations are saved as data.frames, for each sample one object
for methylating epimutations and one for demethylating epimutations, in the working directory
as<sampleName>.methEpicalls.<regionSize>.<minCounts>.p+=<pplus>.p-=<pminus>.RData
and <sampleName>.demethEpicalls.<regionSize>.<minCounts>.p+=<pplus>.p-=<pminus>.RData,
respectively. Each data.frame object contains a list of genomic regions covered by the given sam-
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ples, consisting of the columns: 'chr', 'pos', 'endpos', 'meth', 'unmeth', 'methstate', signifying chro-
mosome name, start of region by chromosomal position, end of region by chromosomal position,
methylated- and unmethylated cytosine counts at that chromosomal position and the methylation
state, which is 1 for methylated positions and −1 for unmethylated positions.

> epiCalls <- epimutation_calls(params)

Statistics for sample: sample (min. coverage: 5 reads/site)

============================================================

Total shared CG sites(=regions!) between sample and reference/CTRL: 14492

Median CG sites of these total shared regions (REFERENCE): 23

Median CG sites of these total shared regions (SINGLE CELL): 13

Control has 10164 fully methylated and 967 fully unmethylated sites

Methylating Epimutation Rate: 0.00283

Demethylating Epimutation Rate: 0.47661

Total Epimutation Rate: 0.47944

Fully meth in single: 606, Fully unmeth in single: 9985

Written epi-methylation calls to matrix:

sample.methEpicalls.10000.5p+=0.5p-=0.2.RData

Written epi-demethylation calls to matrix:

sample.demethEpicalls.10000.5p+=0.5p-=0.2.RData

> head(epiCalls$methSites$singlecell,3)

NULL

> head(epiCalls$demethSites$singlecell,3)

NULL
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