
Introduction to ChIPseqR

Peter Humburg

October 24, 2023

1 Introduction

The ChIPseqR package was developed for the analysis of nucleosome ChIP-seq data. It is suitable for the
high resolution analysis of end-sequenced nucleosomes after MNase digest and can be used for the analysis
of nucleosome positioning as well as histone modi�cation experiments. The parameters of the model used
by ChIPseqR provide some �exibility and choosing them appropriately should allow for the analysis of
other types of experiments although this has not been tested extensively. In the following sections we
will discuss the application of ChIPseqR to simulated nucleosome sequencing data to demonstrate its
basic functionality. This is followed by some details on the underlying method and a discussion of how
this method may be adapted to other types of experiments.

2 Simulating data

We start by simulating a small dataset representing reads from a nucleosome positioning experiment.
The information in this section details the data used for the following examples. To quickly see an
application of ChIPseqR just skip ahead to the next section.

For the purpose of this example we will restrict ourselves to a very small genome and relatively few
reads. This keeps time and memory requirements low but may a�ect ChIPseqR's ability to locate binding
sites. While it was designed to handle low coverage data it works better with genomes that are larger
than the 2Mb we will simulate here. Also note that this simulation is somewhat simplistic and is used
here for demonstration purposes only. If we were interested in carrying out a serious simulation study
for ChIP-seq data we could use a more sophisticated approach1 but this will be su�cient to demonstrate
the basic use of ChIPseqR.

The �rst step in our simple simulation is to de�ne some nucleosome positions. We will assume that
the distance between the centres of adjacent nucleosomes lies between 170 and 300 bp and follows a
negative binomial distribution with mean 200. In addition we will allow nucleosomes to be missing,
introducing a gap of 400 bp between adjacent nucleosomes. Here we generate the distances between
nucleosomes and translate them into nucleosome positions:

> set.seed(1)

> dist <- sample(c(170:300, 400), 10100, prob=c(dnbinom(0:130, mu=30, size=5), 0.2), replace=TRUE)

> pos <- cumsum(dist)

> pos <- pos[pos < 2e6 - 200]

Now we generate read positions relative to binding sites. For this purpose we will make a number of
simplifying assumptions:

1. Reads fall within 15 bp of either end of a nucleosome (with forward strand reads preceding the
binding site and reverse strand reads following it);

2. Reads may be located up to 5 bp inside the binding site;

3. Read positions within these 20 bp are uniformly distributed;

1The ChIPsim package available from Bioconductor provides functionality for this as does the simulation of Zhang et al.

(2008) available at www.gersteinlab.org/proj/chip-seq-simu

1

http://www.gersteinlab.org/proj/chip-seq-simu
www.gersteinlab.org/proj/chip-seq-simu


4. The same number of forward and reverse strand reads are produced;

5. All nucleosomes cover exactly 147 bp;

6. Nucleosome positions are �xed;

7. Non-speci�c background reads are uniformly distributed throughout the genome.

Note that these assumptions are not used for the analysis and are not made by ChIPseqR, they just
simplify the simulation.

We start by identifying all potential start positions for binding site related reads.

> fwdRegion <- unlist(lapply(pos, function(x) (x-88):(x-68)))

> revRegion <- unlist(lapply(pos, function(x) (x+68):(x+88)))

Then we sample 50,000 reads from each strand. This should give us an average of �ve reads per nucleo-
some and strand, not a lot of coverage.

> fwd <- sample(fwdRegion, 5e4, replace=TRUE)

> rev <- sample(revRegion, 5e4, replace=TRUE)

Finally we add 200,000 non-speci�c background reads to each strand. That is a lot of background noise
so �nding the nucleosomes will not be easy.

> fwd <- c(fwd, sample(25:(2e6-25), 2e5, replace=TRUE))

> rev <- c(rev, sample(25:(2e6-25), 2e5, replace=TRUE))

At this stage fwd and rev contain all positions of forward and reverse strand reads. The �nal step in
our simulation is to organise the read position in a data frame that can then serve as input for ChIPseqR.

> reads <- data.frame(chromosome="chr1", position=c(fwd, rev), length=25,

+ strand=rep(c("+", "-"), each=250000))

3 Using simpleNucCall

> library(ChIPseqR)

The easiest way to predict nucleosome positions with ChIPseqR is to call simpleNucCall with mapped
reads. Here we will use the data frame created above but for real data it is usually more convenient to
read the data into an AlignedRead object using the functionality provided by the ShortRead package.
It is possible to simply pass the name of a �le containing the mapped reads to simpleNucCall and they
will be read in before the analysis. Here we �rst convert the read positions into read counts so that we
can use the read counts again later. If we were not interested in inspecting the read counts later on we
could just pass the data frame to simpleNucCall which would convert it into read counts for us.

> counts <- strandPileup(reads, chrLen=2e6, extend=1, plot=FALSE)

> nucs <- simpleNucCall(counts, bind=147, support=15, plot=FALSE)

Note the parameters in the above call. We specify the length of the binding and support regions as well
as the chromosome length. The values chosen for binding and support region length do not match the
values in the simulation perfectly (where they are 137 and 20 respectively). Below we will discuss brie�y
how these parameters can be estimated from the data. It is possible to obtain some diagnostic plots by
setting plot = TRUE.

Diagnostic plots can also be obtained later by plotting the R objects created by strandPileup and
simpleNucCall. For example, to genarate some diagnostic plots to assess how well the data �ts the null
distribution used by ChIPseqR we can simply plot nucs:

> plot(nucs, type="density")

> plot(nucs, type="qqplot")

2



Empirical and fitted null distribution

Score

D
en

si
ty

−5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

−4 −2 0 2 4

−
5

0
5

10

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 1: Diagnostic plots to assess �t of null distribution to observed binding site scores. The blue line
marks the chosen signi�cance cut-o�.

The output is shown in Figure 1. The heavy right tail expected in the presence of nucleosomes in the
sample is clearly visible. There is also some evidence that ChIPseqR overestimated the variance of the
null distribution. As a result of this p-values computed from this �t will be conservative.

Here we have identi�ed 4945 binding sites. Clearly some are missing but that is to be expected
considering the relatively low coverage and high noise level. We can plot some of the data together with
the binding site score and predicted nucleosome positions using plotWindow:

> predicted <- peaks(nucs)[[1]][911]

> plot(counts, chr="chr1", center=predicted, score=nucs, width=1000, type="window")

The output is shown in Figure 2. Note how we use peaks to obtain a list of predicted binding sites. To
see how these predictions relate to the actual position of simulated nucleosomes we add some additional
markers.

> abline(v=pos[pos < predicted + 1000 & pos > predicted - 1000], col=3, lty=3)

As we can see in Figure 2 some nucleosome predictions overlap. These correspond to alternative positions
of the same nucleosome. On real data this may indicate variations in the actual nucleosome position
observed in the sample or simply uncertainty due to low coverage, high noise level or inaccurate choices
of parameters. We can easily obtain non-overlapping predictions:

> calls <- peaks(nucs)[[1]][c(1,which(diff(peaks(nucs)[[1]]) >= 170)+1)]

> length(calls)

[1] 3571

Of course we would like to know how many of these are near actual nucleosome positions.

> table(sapply(calls, function(x) any((x-20):(x+20) %in% pos)))

FALSE TRUE

30 3541

Of the 118 apparent false positives 76 are within 30 bp of a simulated nucleosome.

4 Some details on callBindingSites

Now that we have seen how to obtain binding site predictions it is time to take a closer look at how
they are produced. Above we used simpleNucCall to identify nucleosome positions. The actual work
required to locate binding sites is carried out by callBindingSites. The process of locating binding
sites is divided into several stages:

3



357400 357600 357800 358000 358200 358400

0
1

2
3

4

chr1 357415 − 358415

R
ea

d 
co

un
t

−
4

−
2

0
2

4
6

8

S
co

re
Figure 2: Read counts and predicted binding sites. Read counts on forward (red) and reverse (blue)
strand are shown as vertical bars. The binding site score is shown in green with green boxes at the bottom
indicating predicted nucleosome positions. The true position of simulated nucleosomes is indicated by
vertical green lines.

1. Estimate length of binding and support region (if required);

2. Calculate binding site score;

3. Determine signi�cance threshold;

4. Locate signi�cant peaks in binding site score.

In this section we will take a closer look at these di�erent stages to get a better understanding of how
binding sites are identi�ed and brie�y introducing the functions used for each stage.

4.1 Estimating parameters

In practice it may not always be obvious what the best choice of parameters is. It is possible to get
estimates for both parameters from the data by considering the cross-correlation between the read counts
on the forward and reverse strand. The function getBindLen is provided for this purpose. However, it
may not always produce good results. The approach taken in getBindLen is to identify the �rst two
peaks in cross-correlation and to derive values for binding and support region length consistent with the
location of these peaks. One of the main underlying assumptions is that the distribution of read counts
in the support region is symmetric about the centre of the support region and the accuracy of results

4



depends largely on how well this assumption holds. It is also possible to supply one parameter and
estimate the other which can improve results substantially if the supplied parameter value is accurate.
It should also be noted that binding sites are assumed to occur in regular intervals and that they are
located relatively close to each other. This may be approximately true for nucleosomes but does not
hold for other proteins of interest.

Here is an example of how we might use getBindLen to estimate the parameters for our simulated
data.

0 100 200 300 400

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Lag

C
ro

ss
−

co
rr

el
at

io
n

Figure 3: Cross-correlation between reads on forward and reverse strand used to estimate length of
binding and support regions.

> bLen <- getBindLen(counts, bind = c(100,200), support = c(5, 50))

This tells getBindLen to look for peaks in the cross-correlation that correspond to a binding region
length between 100 and 200 bp and a support region length between 5 and 50 bp. The resulting estimates
are 75 bp for the binding region and 41 bp for the support regions. Since we know that the correct answer
should be 137 and 20 bp respectively it is clear that this is not perfect.

To use this parameter estimation method as part of the binding site prediction we can simply pass
bind = c(100,200) and support = c(5, 50) as arguments to callBindingSites (or simpleNucCall).

4.2 Scoring binding sites

During this step the read counts are scanned along the genome and each position is assigned a score
indicating how likely it is to be the centre of a binding site. This involves a sliding window partitioned
into three regions, the binding region in the centre and forward and reverse strand support regions on

5



either side. Read counts in each region are compared to a background estimate obtained from a larger
window (the default is 2000 bp). A score is calculated for each region, with larger scores indication
increasing departure from the background distribution, and these are then combined into a binding site
score. The necessary computations are carried out by a call to startScore. Further parameters used
here are bgCutoff and supCutoff. They can be used to limit the change in the estimate for adjacent
background windows and between forward and reverse support regions. These parameters should be
chosen between 0.5 and 1. Lower values correspond to a more restrictive cut-o�. Setting bgCutoff =

0.5 will essentially force the use of a uniform background (which is not recommended) while bgCutoff
= 1 allows arbitrarily large changes in background estimates. The cut-o� for support regions works in
a similar way. Generally lower cut-o� values reduce the model's ability to adapt to changes in local
coverage while larger values make it more sensitive to arti�cially large read counts observed in some
locations.

4.3 Determining signi�cance

Once binding site scores are calculated an attempt is made to assess their signi�cance by estimating the
parameters of the null distribution. To achieve this a (truncated) normal distribution is �tted to the left
tail of the observed scores. This assumes that low scores are largely una�ected by the presence of binding
sites. Computations carried out by getCutoff produce a binding site score cut-o� corresponding to the
requested false discovery rate and the parameters of the �tted null distribution.

4.4 Peak calling

During the �nal stage of the analysis signi�cant peaks in the binding site score are identi�ed and reported
as predicted binding sites by pickPeak. This simply identi�es all peaks that exceed the threshold
determined in the previous step and identi�es the location of the maximum of each peak as a binding
site. Note that this may produce overlapping binding site predictions if two such peaks are located close
to each other. By default peaks have to be seperated by at least one value below the threshold but in
some cases, e.g. when peaks are relatively wide compared to the length of a binding site, we may want
to relax this requirement such that peaks can be separated by a relatively low scoring region even if the
score does not drop below the threshold. This can be achieved by using sub = TRUE.

5 Beyond nucleosomes

Although ChIPseqR has been designed to locate nucleosomes it should be possible to apply the same
approach to other types of ChIP-seq experiments. The most obvious way to adjust ChIPseqR to di�erent
experiments is through the choice of binding and support region length. These relate to the physical
length of the binding site and the length of DNA fragments. Generally a shorter binding site will require a
shorter binding region but the best choice for this parameter also depends on the experimental protocol
used. If DNA is sonicated it may be useful to further reduce the length of the binding region while
increasing the length of support regions. Longer support regions will be required if the binding site is
short compared to the fragment length.

6 Internal data representation

To reduce memory requirements the internal representation of read counts is compressed through run-
length encoding. In some cases this can lead to an increase in required memory. Should this be the case
for a particular dataset we can disable compression by calling strandPileup with compress = FALSE.
If we just want to obtain an expanded representation of an already existing ReadCounts object we can
use decompress:

> counts2 <- decompress(counts)

In this case the decompressed representation is 2.5 times larger than the compressed one. For real
datasets this factor can be substantially larger, especially when coverage is low.

6



A similar approach is used to compress the binding site score. Since the score is a �oating point
value a step function approximation is used to achieve better compression. This involves rounding the
calculated score to a certain number of digits. The use of fewer digits will improve compression but
also results in the loss of information and may a�ect results. The level of compression can be set by
passing argument digits to callBindingSite or simpleNucCall. The default is 16 which results in
low compression but retains the relevant information. The scoring method used by ChIPseqR is likely to
produce missing values, especially in regions of low coverage. This can result in relatively long runs of
NA's that are always compressed. Again it is possible to expand the representation of binding site scores
through a call to decompress. Note however that information that was lost during compression can only
be restored through recalculating binding site scores at a lower compression setting. It is also possible to
compress an expanded representation of read counts or binding site scores through a call to compress.

7 Session info

> sessionInfo()

R version 4.3.1 (2023-06-16)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 22.04.3 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so

LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York

tzcode source: system (glibc)

attached base packages:

[1] stats4 stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] IRanges_2.36.0 ChIPseqR_1.56.0 S4Vectors_0.40.0

[4] BiocGenerics_0.48.0

loaded via a namespace (and not attached):

[1] Matrix_1.6-1.1 compiler_4.3.1

[3] crayon_1.5.2 fBasics_4031.95

[5] Rcpp_1.0.11 ShortRead_1.60.0

[7] SummarizedExperiment_1.32.0 Biobase_2.62.0

[9] timsac_1.3.8-4 Rsamtools_2.18.0

[11] GenomicRanges_1.54.0 bitops_1.0-7

[13] Biostrings_2.70.0 GenomicAlignments_1.38.0

[15] parallel_4.3.1 timeSeries_4031.107

[17] png_0.1-8 BiocParallel_1.36.0

[19] lattice_0.22-5 deldir_1.0-9

[21] XVector_0.42.0 S4Arrays_1.2.0

7



[23] latticeExtra_0.6-30 GenomeInfoDb_1.38.0

[25] DelayedArray_0.28.0 MatrixGenerics_1.14.0

[27] spatial_7.3-17 interp_1.1-4

[29] GenomeInfoDbData_1.2.11 timeDate_4022.108

[31] RColorBrewer_1.1-3 HilbertVis_1.60.0

[33] hwriter_1.3.2.1 SparseArray_1.2.0

[35] zlibbioc_1.48.0 grid_4.3.1

[37] codetools_0.2-19 abind_1.4-5

[39] RCurl_1.98-1.12 matrixStats_1.0.0

[41] tools_4.3.1 jpeg_0.1-10

8


	Introduction
	Simulating data
	Using simpleNucCall
	Some details on callBindingSites
	Estimating parameters
	Scoring binding sites
	Determining significance
	Peak calling

	Beyond nucleosomes
	Internal data representation
	Session info

