Getting started with SimBu

Alexander Dietrich

Installation

To install the developmental version of the package, run:

install.packages("devtools")
devtools::install_github("omnideconv/SimBu")

To install from Bioconductor:

if (!require("BiocManager", quietly = TRUE)) {
  install.packages("BiocManager")
}

BiocManager::install("SimBu")
library(SimBu)

Introduction

As complex tissues are typically composed of various cell types, deconvolution tools have been developed to computationally infer their cellular composition from bulk RNA sequencing (RNA-seq) data. To comprehensively assess deconvolution performance, gold-standard datasets are indispensable. Gold-standard, experimental techniques like flow cytometry or immunohistochemistry are resource-intensive and cannot be systematically applied to the numerous cell types and tissues profiled with high-throughput transcriptomics. The simulation of ‘pseudo-bulk’ data, generated by aggregating single-cell RNA-seq (scRNA-seq) expression profiles in pre-defined proportions, offers a scalable and cost-effective alternative. This makes it feasible to create in silico gold standards that allow fine-grained control of cell-type fractions not conceivable in an experimental setup. However, at present, no simulation software for generating pseudo-bulk RNA-seq data exists.
SimBu was developed to simulate pseudo-bulk samples based on various simulation scenarios, designed to test specific features of deconvolution methods. A unique feature of SimBu is the modelling of cell-type-specific mRNA bias using experimentally-derived or data-driven scaling factors. Here, we show that SimBu can generate realistic pseudo-bulk data, recapitulating the biological and statistical features of real RNA-seq data. Finally, we illustrate the impact of mRNA bias on the evaluation of deconvolution tools and provide recommendations for the selection of suitable methods for estimating mRNA content.

Getting started

This chapter covers all you need to know to quickly simulate some pseudo-bulk samples!

This package can simulate samples from local or public data. This vignette will work with artificially generated data as it serves as an overview for the features implemented in SimBu. For the public data integration using sfaira (Fischer et al. 2020), please refer to the “Public Data Integration” vignette.

We will create some toy data to use for our simulations; two matrices with 300 cells each and 1000 genes/features. One represents raw count data, while the other matrix represents scaled TPM-like data. We will assign these cells to some immune cell types.

counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))
colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:300))
rownames(counts) <- paste0("gene_", rep(1:1000))
rownames(tpm) <- paste0("gene_", rep(1:1000))
annotation <- data.frame(
  "ID" = paste0("cell_", rep(1:300)),
  "cell_type" = c(
    rep("T cells CD4", 50),
    rep("T cells CD8", 50),
    rep("Macrophages", 100),
    rep("NK cells", 10),
    rep("B cells", 70),
    rep("Monocytes", 20)
  )
)

Creating a dataset

SimBu uses the SummarizedExperiment class as storage for count data as well as annotation data. Currently it is possible to store two matrices at the same time: raw counts and TPM-like data (this can also be some other scaled count matrix, such as RPKM, but we recommend to use TPMs). These two matrices have to have the same dimensions and have to contain the same genes and cells. Providing the raw count data is mandatory!
SimBu scales the matrix that is added via the tpm_matrix slot by default to 1e6 per cell, if you do not want this, you can switch it off by setting the scale_tpm parameter to FALSE. Additionally, the cell type annotation of the cells has to be given in a dataframe, which has to include the two columns ID and cell_type. If additional columns from this annotation should be transferred to the dataset, simply give the names of them in the additional_cols parameter.

To generate a dataset that can be used in SimBu, you can use the dataset() method; other methods exist as well, which are covered in the “Inputs & Outputs” vignette.

ds <- SimBu::dataset(
  annotation = annotation,
  count_matrix = counts,
  tpm_matrix = tpm,
  name = "test_dataset"
)
#> Filtering genes...
#> Created dataset.

SimBu offers basic filtering options for your dataset, which you can apply during dataset generation:

Simulate pseudo bulk datasets

We are now ready to simulate the first pseudo bulk samples with the created dataset:

simulation <- SimBu::simulate_bulk(
  data = ds,
  scenario = "random",
  scaling_factor = "NONE",
  ncells = 100,
  nsamples = 10,
  BPPARAM = BiocParallel::MulticoreParam(workers = 4), # this will use 4 threads to run the simulation
  run_parallel = TRUE
) # multi-threading to TRUE
#> Using parallel generation of simulations.
#> Finished simulation.

ncells sets the number of cells in each sample, while nsamples sets the total amount of simulated samples.
If you want to simulate a specific sequencing depth in your simulations, you can use the total_read_counts parameter to do so. Note that this parameter is only applied on the counts matrix (if supplied), as TPMs will be scaled to 1e6 by default.

SimBu can add mRNA bias by using different scaling factors to the simulations using the scaling_factor parameter. A detailed explanation can be found in the “Scaling factor” vignette.

Currently there are 6 scenarios implemented in the package:

pure_scenario_dataframe <- data.frame(
  "B cells" = c(0.2, 0.1, 0.5, 0.3),
  "T cells" = c(0.3, 0.8, 0.2, 0.5),
  "NK cells" = c(0.5, 0.1, 0.3, 0.2),
  row.names = c("sample1", "sample2", "sample3", "sample4")
)
pure_scenario_dataframe
#>         B.cells T.cells NK.cells
#> sample1     0.2     0.3      0.5
#> sample2     0.1     0.8      0.1
#> sample3     0.5     0.2      0.3
#> sample4     0.3     0.5      0.2

Results

The simulation object contains three named entries:

utils::head(SummarizedExperiment::assays(simulation$bulk)[["bulk_counts"]])
#> 6 x 10 sparse Matrix of class "dgCMatrix"
#>   [[ suppressing 10 column names 'random_sample1', 'random_sample2', 'random_sample3' ... ]]
#>                                               
#> gene_1 506 492 485 518 504 460 480 487 480 497
#> gene_2 492 513 483 524 496 483 490 536 481 470
#> gene_3 487 498 511 527 510 493 497 459 500 512
#> gene_4 473 449 483 471 474 474 447 460 471 480
#> gene_5 473 512 528 537 528 479 466 461 512 478
#> gene_6 522 438 473 502 531 531 494 480 484 478
utils::head(SummarizedExperiment::assays(simulation$bulk)[["bulk_tpm"]])
#> 6 x 10 sparse Matrix of class "dgCMatrix"
#>   [[ suppressing 10 column names 'random_sample1', 'random_sample2', 'random_sample3' ... ]]
#>                                                                             
#> gene_1  998.9902 1001.1375 1019.8349  957.6287 1067.3437 1075.0604 1046.2359
#> gene_2  967.1184 1049.6827 1054.6124  954.9599  917.8500 1053.1275  953.5249
#> gene_3  927.2910  958.8038  982.3943  994.6034 1064.3977 1004.2412  943.6586
#> gene_4  920.5227  977.6432 1012.5633 1060.8511 1016.0351  953.3306 1026.4133
#> gene_5  999.4029 1032.0017  940.2508  932.8545  994.2710  978.4141 1086.9866
#> gene_6 1010.5148  939.0468  957.0976  907.7571  986.0833 1012.7226  922.2673
#>                                     
#> gene_1 1062.3169  997.4930  946.4925
#> gene_2  967.3037 1034.5575  976.1153
#> gene_3  996.3236  932.8612 1054.6341
#> gene_4  999.8807  999.5702 1027.2425
#> gene_5 1010.5656 1011.1685  906.1921
#> gene_6  999.4704  951.8668  931.2134

If only a single matrix was given to the dataset initially, only one assay is filled.

It is also possible to merge simulations:

simulation2 <- SimBu::simulate_bulk(
  data = ds,
  scenario = "even",
  scaling_factor = "NONE",
  ncells = 1000,
  nsamples = 10,
  BPPARAM = BiocParallel::MulticoreParam(workers = 4),
  run_parallel = TRUE
)
#> Using parallel generation of simulations.
#> Finished simulation.
merged_simulations <- SimBu::merge_simulations(list(simulation, simulation2))

Finally here is a barplot of the resulting simulation:

SimBu::plot_simulation(simulation = merged_simulations)

More features

Simulate using a whitelist (and blacklist) of cell-types

Sometimes, you are only interested in specific cell-types (for example T cells), but the dataset you are using has too many other cell-types; you can handle this issue during simulation using the whitelist parameter:

simulation <- SimBu::simulate_bulk(
  data = ds,
  scenario = "random",
  scaling_factor = "NONE",
  ncells = 1000,
  nsamples = 20,
  BPPARAM = BiocParallel::MulticoreParam(workers = 4),
  run_parallel = TRUE,
  whitelist = c("T cells CD4", "T cells CD8")
)
#> Using parallel generation of simulations.
#> Finished simulation.
SimBu::plot_simulation(simulation = simulation)

In the same way, you can also provide a blacklist parameter, where you name the cell-types you don’t want to be included in your simulation.

utils::sessionInfo()
#> R version 4.4.0 beta (2024-04-15 r86425)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 22.04.4 LTS
#> 
#> Matrix products: default
#> BLAS:   /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_GB              LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: America/New_York
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] SimBu_1.6.0
#> 
#> loaded via a namespace (and not attached):
#>  [1] SummarizedExperiment_1.34.0 gtable_0.3.5               
#>  [3] xfun_0.43                   bslib_0.7.0                
#>  [5] ggplot2_3.5.1               Biobase_2.64.0             
#>  [7] lattice_0.22-6              vctrs_0.6.5                
#>  [9] tools_4.4.0                 generics_0.1.3             
#> [11] stats4_4.4.0                parallel_4.4.0             
#> [13] tibble_3.2.1                fansi_1.0.6                
#> [15] highr_0.10                  pkgconfig_2.0.3            
#> [17] Matrix_1.7-0                data.table_1.15.4          
#> [19] RColorBrewer_1.1-3          S4Vectors_0.42.0           
#> [21] sparseMatrixStats_1.16.0    lifecycle_1.0.4            
#> [23] GenomeInfoDbData_1.2.12     compiler_4.4.0             
#> [25] farver_2.1.1                munsell_0.5.1              
#> [27] codetools_0.2-20            GenomeInfoDb_1.40.0        
#> [29] htmltools_0.5.8.1           sass_0.4.9                 
#> [31] yaml_2.3.8                  pillar_1.9.0               
#> [33] crayon_1.5.2                jquerylib_0.1.4            
#> [35] tidyr_1.3.1                 BiocParallel_1.38.0        
#> [37] DelayedArray_0.30.0         cachem_1.0.8               
#> [39] abind_1.4-5                 tidyselect_1.2.1           
#> [41] digest_0.6.35               dplyr_1.1.4                
#> [43] purrr_1.0.2                 labeling_0.4.3             
#> [45] fastmap_1.1.1               grid_4.4.0                 
#> [47] colorspace_2.1-0            cli_3.6.2                  
#> [49] SparseArray_1.4.0           magrittr_2.0.3             
#> [51] S4Arrays_1.4.0              utf8_1.2.4                 
#> [53] withr_3.0.0                 UCSC.utils_1.0.0           
#> [55] scales_1.3.0                rmarkdown_2.26             
#> [57] XVector_0.44.0              httr_1.4.7                 
#> [59] matrixStats_1.3.0           proxyC_0.4.1               
#> [61] evaluate_0.23               knitr_1.46                 
#> [63] GenomicRanges_1.56.0        IRanges_2.38.0             
#> [65] rlang_1.1.3                 Rcpp_1.0.12                
#> [67] glue_1.7.0                  BiocGenerics_0.50.0        
#> [69] jsonlite_1.8.8              R6_2.5.1                   
#> [71] MatrixGenerics_1.16.0       zlibbioc_1.50.0

References

Fischer, David S., Leander Dony, Martin König, Abdul Moeed, Luke Zappia, Sophie Tritschler, Olle Holmberg, Hananeh Aliee, and Fabian J. Theis. 2020. “Sfaira Accelerates Data and Model Reuse in Single Cell Genomics.” bioRxiv. https://doi.org/10.1101/2020.12.16.419036.