
HowTo BGX

Ernest Turro

Imperial College London

April 25, 2007

1 Introduction

This vignette describes how to use bgx , a C++ implementation of a Bayesian hierarchical
integrated approach to the modelling and analysis of A�ymetrix GeneChip arrays. The
model and methodology is described in Hein et al, 2005.

There are two ways to run bgx : (1) through R and (2) as a standalone binary. Both
ways make use of probe level GeneChip data, which you must obtain as GeneChip CEL
�les.

2 Reading in the CEL �les

When you load bgx , several required packages from the Bioconductor1 project are auto-
matically loaded.

> library(bgx)

The a�y package allows you to read CEL �les into an AffyBatch object. This can
be achieved by changing your working directory to wherever the CEL �les are stored
and executing:

> aData <- ReadAffy()

This will read in the CEL �les in alphabetical order and save the data in the aData
object. Alternatively, you can specify the speci�c �les you would like to read in by
adding their paths to the argument list, for example:

> aData <- ReadAffy("CEL/choe/chipC-rep1.CEL", "CEL/choe/chipS-rep2.CEL")

1http://bioconductor.org

1

http://bioconductor.org

3 Running BGX through R

A basic execution of the program can be performed by simply passing an AffyBatch ob-
ject as a single parameter to the bgx function and saving the result in an ExpressionSet

object. The result will hold array-speci�c gene expression values and their corresponding
standard errors in assayData(eset)$exprs and assayData(eset)$se.exprs respec-
tively.

> eset <- bgx(aData)

A more elaborate scenario would involve splitting the arrays into a number of condi-
tions using the samplesets argument2; specifying which genes to analyse with the genes

argument; specifying whether to take into account probe a�nity with probeA� ; setting
the number of burn-in and post burn-in runs with the burnin and iter arguments respec-
tively; setting the set of parameters to save with the output argument3; and specifying
where to save the runs with rundir . Execute help(bgx) in R for a full explanation of
all the parameters.

As an example, let us analyse the Dilution data set and save the results in the
current working directory ("."):

> library(affydata)

> library(hgu95av2cdf)

> data(Dilution)

> eset <- bgx(Dilution, samplesets=c(2,2), probeAff=FALSE, burnin=2048, iter=8192,genes=c(12500:12599), output="all")

The eset object will contain gene expression information for each gene under each
condition (not necessarily each array). You may obtain the gene expression measure
using the exprs function. For instance:

> exprs(eset)[10:40,] # Shorthand for assayData(eset)\$exprs[10:40,]

condition 1 condition 2

947_at 6.54444 6.25029

948_s_at 4.84583 4.45123

949_s_at 4.84665 4.55750

950_at 4.48827 4.27474

951_at 2.70152 2.49357

952_at 1.58622 1.94747

953_g_at 5.28392 4.89309

2Note that if your AffyBatch object contains information on the experimental design in the
phenoData slot, you do not need to use the samplesets argument.

3output can be set to either "minimal", "trace" or "all". See the documentation for an explanation
of what these levels mean

2

954_s_at 6.36809 6.09223

955_at 6.60929 6.33914

956_at 7.00133 6.70313

957_at 4.62867 4.25959

958_s_at 5.53495 5.18097

959_at 1.90068 1.65003

960_g_at 5.22854 4.93502

961_at 1.71897 1.60414

962_at 2.46971 2.01055

963_at 4.55256 4.25666

964_at 4.27345 3.96223

965_at 2.17875 1.15486

966_at 4.44520 3.96493

967_g_at 4.85540 4.59308

968_i_at 3.33662 3.63703

969_s_at 4.80061 4.41228

970_r_at 6.29191 6.17022

971_s_at 2.03316 2.89112

973_at 4.35829 4.09485

974_at 2.27413 2.23694

975_at 4.26401 3.96236

976_s_at 3.52073 3.17471

977_s_at 4.83872 4.59583

978_at 3.19150 2.26953

Run help(ExpressionSet) in R for more information.
Note that samplesets should be set to an array specifying the number of replicates

in each condition. If set to (3,2), bgx will treat the �rst three arrays read into R as
replicates under condition 1 and the next two as replicates under condition 2. You should
make sure that all condition 1 �les are read in �rst and all condition 2 �les are read
in second by ReadAffy(). You may check the order of the samples in your AffyBatch
object by using the sampleNames function:

> sampleNames(Dilution)

[1] "20A" "20B" "10A" "10B"

4 Running BGX as a standalone binary

Occasionally it may be useful to run bgx as a standalone binary from the command line4.
In this case, you should use the standalone.bgx function instead of the bgx function.

4You can compile it by tweaking 'src/Make�le.standalone' to your speci�cations and running `make
-f Make�le.standalone` from the 'src' directory.

3

It takes the same arguments as bgx, with the addition of dirname, which should specify
where you would like to save the input �les required by the standalone binary.

aData <- ReadAffy() # Read in 6 arrays across two conditions

in alphabetical order

standalone.bgx(aData, samplesets=c(3,3), genes=c(1:650,1000:1200),

burnin=16384, iter=65536, output="minimal",

dirname="input-choe3replicates")

Once you have saved the input �les, you should locate the binary, make sure it is
executable5, and pass the path to the newly created infile.txt �le as a single argument.
For example:

./bgx ../input-choe3replicates/infile.txt

5 Detailed analysis of the output

If you wish to analyse the output in detail, you should �rst read the output into a list
as follows:

> bgxOutput <- readOutput.bgx("run.1")

You may then pass the bgxOutput object to any of several analysis functions. For
instance, to view the gene expression distributions under the various conditions for gene
10, you could do:

> plotExpressionDensity(bgxOutput, gene=10)

5Under Unix-like environments, you can type chmod +x bgx at the command prompt to do this.

4

5.5 6.0 6.5 7.0

0.
0

0.
5

1.
0

1.
5

2.
0

Densities of mu for gene 947_at

Expression

D
en

si
ty

Cond 1
Cond 2

In order to get a list of ranked di�erential expression values, you could do:

> rankedGeneList <- rankByDE(bgxOutput)

> print(rankedGeneList[1:25,]) # print top 25 DEG

Position DiffExpression

941_at 4 36.347898

956_at 19 31.947193

955_at 18 30.719990

AFFX-HUMGAPDH/M33197_5_at 89 29.730292

AFFX-HSAC07/X00351_5_at 83 28.877642

AFFX-HUMGAPDH/M33197_M_at 91 25.443945

947_at 10 25.033984

AFFX-HSAC07/X00351_M_at 85 24.970413

954_s_at 17 22.723817

946_at 9 22.693250

958_s_at 21 21.205970

AFFX-HUMGAPDH/M33197_3_at 87 18.793519

5

AFFX-HUMISGF3A/M97935_MB_at 96 17.405426

953_g_at 16 16.603250

AFFX-BioDn-3_at 70 15.625753

982_at 44 14.335130

AFFX-HUMISGF3A/M97935_3_at 93 13.916216

AFFX-HUMISGF3A/M97935_MA_at 95 12.615134

948_s_at 11 12.404184

AFFX-HSAC07/X00351_3_at 81 12.382537

969_s_at 32 12.107360

993_at 54 12.089784

957_at 20 11.909911

960_g_at 23 9.688060

949_s_at 12 9.650797

Run help(analysis.bgx) for more detailed usage instructions on the analysis func-
tions.

6

	Introduction
	Reading in the CEL files
	Running BGX through R
	Running BGX as a standalone binary
	Detailed analysis of the output

