Exploratory data analysis for microarray data

Anja von Heydebreck

Max–Planck–Institute for Molecular Genetics, Dept. Computational Molecular Biology, Berlin, Germany

heydebre@molgen.mpg.de
Outline

- Goals

- Cluster analysis
 - Distance measures
 - Clustering methods

- Projection methods

- Class discovery
Exploratory data analysis/unsupervised learning

“Look at the data”; identify structures in the data and visualize them.

Can we see biological/experimental parameters; are there outliers?

Find groups of genes and/or samples sharing similarity.

Unsupervised learning: The analysis makes no use of gene/sample annotations.
Clustering

Aim: Group objects according to their similarity.
Clustering gene expression data

- Clustering can be applied to rows (genes) and/or columns (samples/arrays) of an expression data matrix.

- Clustering may allow for reordering of the rows/columns of an expression data matrix which is appropriate for visualization (heatmap).
Clustering genes

Aims:

- identify groups of co-regulated genes
- identify typical spatial or temporal expression patterns (e.g. yeast cell cycle data)
- arrange a set of genes in a linear order which is at least not totally meaningless
Clustering samples

Aims:

- detect experimental artifacts/bad hybridizations (quality control)
- check whether samples are grouped according to known categories (meaning that these are clearly visible in terms of gene expression)
- identify new classes of biological samples (e.g. tumor subtypes)
Aim: Group objects according to their similarity.

Clustering requires a definition of distance between the objects, quantifying a notion of (dis)similarity. After this has been specified, a clustering algorithm may be applied.

The result of a cluster analysis may strongly depend on the chosen distance measure.
A metric d is a function satisfying:

1. **non-negativity**: $d(a, b) \geq 0$;
2. **symmetry**: $d(a, b) = d(b, a)$;
3. $d(a, a) = 0$.
4. **definiteness**: $d(a, b) = 0$ if and only if $a = b$;
5. **triangle inequality**: $d(a, b) + d(b, c) \geq d(a, c)$.

A function only satisfying 1.-3. is called a **distance**.
Vectors $\mathbf{x} = (x_1, \ldots, x_n), \mathbf{y} = (y_1, \ldots, y_n)$

- Euclidean distance: $d_M(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$
- Manhattan distance: $d_E(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} |x_i - y_i|$
- One minus Pearson correlation:

$$d_C(\mathbf{x}, \mathbf{y}) = 1 - \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(\sum_{i=1}^{n} (x_i - \bar{x})^2)^{1/2}(\sum_{i=1}^{n} (x_i - \bar{x})^2)^{1/2}}$$
Distance measures/standardization

- The correlation distance is invariant wrt shifting and scaling of its arguments:

\[d_C(x, y) = d_C(x, ay + b), \ a > 0. \]

- One may apply standardization to observations or variables:

\[x \mapsto \frac{x - \bar{x}}{\sigma(x)}, \]

where \(\sigma(x) \) is the standard deviation of \(x \).

- The correlation distance and the Euclidean distance between standardized vectors are closely related:

\[d_E(x, y) = \sqrt{2nd_C(x, y)}. \]
Distances between clusters

Extend a distance measure d to a measure of distance between clusters.

- **Single linkage** The distance between two clusters is the minimal distance between two objects, one from each cluster.

- **Average linkage** The distance between two clusters is the average of the pairwise distance between members of the two clusters.

- **Complete linkage** The distance between two clusters is the maximum of the distances between two objects, one from each cluster.

- **Centroid linkage** The distance between two clusters is the distance between their centroids.
Hierarchical clustering

- Build a cluster tree/dendrogram, starting from the individual objects as clusters.

- In each step, merge the two clusters with the minimum distance between them - using one of the above linkage principles.

- Continue until everything is in one cluster.

- If you want a partition of the set of objects, cut the tree at a certain height.

- R function `hclust` in package `mva`.
Hierarchical clustering, example

Golub data, 150 genes with highest variance

Cluster Dendrogram

hclust (*, "average")

d
Height

AML AML AML AML ALL ALL
Example: Clustering of rows and columns

User specifies the number k of desired clusters. Input: Objects given as vectors in n-dimensional space (Euclidean distance is used).

For an initial choice of k cluster centers, each object is assigned to the closest of the centers.

The centroids of the obtained clusters are taken as new cluster centers.

This procedure is iterated until convergence.
Many methods require the user to specify the number of clusters. Generally it is not clear which number is appropriate for the data at hand.

Several authors have proposed criteria for determining the number of clusters, see Dudoit and Fridlyand 2002.

Sometimes there may not be a clear answer to this question - there may be a hierarchy of clusters.
Which scale, which distance measure to use for clustering?

❖ Data should be normalized and transformed to an appropriate scale before clustering (log or the generalized log resulting from variance stabilization (R package \textit{vsn})).

❖ Clustering genes: Standardization of gene vectors or the use of the correlation distance is useful when looking for patterns of relative changes - independent of their magnitude.

❖ Clustering samples: Standardizing genes gives relatively smaller weight for genes with high variance across the samples - not generally clear whether this is desirable.

❖ Gene filtering (based on intensity/variability) may be reasonable - also for computational reasons.
Some remarks on clustering

วล A clustering algorithm will always yield clusters, whether the data are organized in clusters or not.

วล The bootstrap may be used to assess the variability of a clustering (Kerr/Churchill 2001, Pollard/van der Laan 2002).

วล If a class distinction is not visible in cluster analysis, it may still be accessible for supervised methods (e.g. classification).
Projection methods

- Map the rows and/or columns of the data matrix to a plane such that similar rows/columns are located close to each other.

- Different methods (principal component analysis, multidimensional scaling, correspondence analysis) use different notions of similarity.
Principal component analysis

- Imagine k observations (e.g. tissue samples) as points in n-dimensional space (here: n is the number of genes).

- Aim: Dimension reduction while retaining as much of the variation in the data as possible.

- Principal component analysis identifies the direction in this space with maximal variance (of the observations projected onto it).

- This gives the first principal component (PC). The $i + 1$st PC is the direction with maximal variance among those orthogonal to the first i PCs.

- The data projected onto the first PCs may then be visualized in scatterplots.
Principal component analysis

PCA can be explained in terms of the eigenvalue decomposition of the covariance/correlation matrix Σ:

$$\Sigma = SS^t,$$

where the columns of S are the eigenvectors of Σ (the principal components), and Λ is the diagonal matrix with the eigenvalues (the variances of the principal components).

Use of the correlation matrix instead of the covariance matrix amounts to standardizing variables (genes).

R function `prcomp` in package `mva`.
Correspondence analysis: Projection onto plane
Correspondence analysis: Properties of projection

- Similar row/column profiles (small χ^2-distance) are projected close to each other.
- A gene with positive/negative association with a sample will lie in the same/opposite direction from the centroid.
Correspondence analysis is usually applied to tables of frequencies (contingency tables) in order to show associations between particular rows and columns – in the sense of deviations from homogeneity, as measured by the χ^2-statistic.

Data matrix is supposed to contain only positive numbers - may apply global shifting.

R packages CoCoAn, multiv.
Correspondence analysis - Example

Golub data
Contingency table of differentially expressed genes

<table>
<thead>
<tr>
<th></th>
<th>right ventricular hypertrophy</th>
<th>tetralogy of Fallot</th>
<th>atrium/ventricle</th>
</tr>
</thead>
<tbody>
<tr>
<td>stress response</td>
<td>11</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>constituent of muscle</td>
<td>7</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td>constituent of ribosome</td>
<td>9</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>cell proliferation</td>
<td>7</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>signal transduction</td>
<td>14</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>metabolism</td>
<td>38</td>
<td>66</td>
<td>44</td>
</tr>
<tr>
<td>cell motility</td>
<td>5</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Correspondence analysis

Association between Gene Ontology categories and tissue/disease phenotypes
ISIS - a class discovery method

- **Aim:** detect subtle class distinctions among a set of tissue samples/gene expression profiles (application: search for disease subtypes)

- **Idea:** Such class distinctions may be characterized by differential expression of just a small set of genes, not by global similarity of the gene expression profiles.

- The method quantifies this notion and conducts a search for interesting class distinctions in this sense.

- **R package ISIS available at**
 http://www.molgen.mpg.de/~heydebre

