1.) **Installing R.** Check whether R is installed on your computer. If not, download it from cran.r-project.org and install it.

2.) **Reading data files.** In the folder `data/alizadeh`, you find a file `lc7b048rex.DAT`.

 a. Open it in a text editor.
 b. Read it into a data frame (use the function `read.delim`)
 c. Look at the contents of the table (use the functions `dim`, `colnames`, and subsetting)

   ```r
   R> x = read.delim("../data/alizadeh/lc7b048rex.DAT")
   R> dim(x)
   [1] 9216 34
   R> colnames(x)
   [1] "HEADER" "SPOT" "GRID" "TOP" "LEFT" "BOT"
   [7] "RIGHT" "ROW" "COL" "CH1I" "CH1B" "CH1AB"
   [13] "CH2I" "CH2B" "CH2AB" "SPIX" "BGPIX" "EDGE"
   [19] "RAT2" "MRAT" "REGR" "CORR" "LFRAT" "CH1GTB1"
   [25] "CH2GTB1" "CH1GTB2" "CH2GTB2" "CH1EDGEA" "CH2EDGEA" "FLAG"
   [31] "CH1KSD" "CH1KSP" "CH2KSD" "CH2KSP"
   R> x[1:12, ]
   ```

3.) **Simple plots.**

 a. Make a histogram of the values in the column `CH1I`.
 b. Produce scatterplots of `CH1I` versus `CH2I`, once with linear axis scaling, once with double-logarithmic.
 c. Find out how to decorate the plot with our own axis labels and plot title, and how to change the plot symbols.
 d. Save the plots as PDF, and as Windows metafiles. Copy and paste them into MS-Office applications.

   ```r
   R> par(mfrow = c(2, 1))
   R> hist(x$CH1I, breaks = 100)
   R> hist(log(x$CH1I, 2), breaks = 100)
   ```
R> par(mfrow = c(2, 2))
R> plot(x$CH1I, x$CH2I)
R> plot(x$CH1I, x$CH2I, log = "xy")
R> plot(x$CH1I, x$CH2I, log = "xy", main = "lc7b048", xlab = "green",
+ ylab = "red", pch = ".")
R> plot(x$CH1I, x$CH1B, log = "xy", xlab = "foreground", ylab = "background",
+ pch = ".")
4.) **Spatial distribution.** The spots on these arrays are arranged in a quadratic pattern of 96 rows and 96 columns. However, the order of the 9216 rows in the file does not simply reflect the spatial arrangement row-by-row or column-by-column. In order to display the spatial distribution of measured foreground and background intensities, we first need to rearrange the data. The relationship between the x- and y-coordinates, as numbers from 1, ..., 96, and the data in the files is given by:

\[
\begin{align*}
R> px &= x\$COL + 24 \ast (x\$GRID - 1)\%4 \\
R> py &= x\$ROW + 24 \ast (x\$GRID - 1)\%4
\end{align*}
\]

The following piece of code displays a 2D spatial false-color representation of the CH2I and CH2I intensity data.

\[
\begin{align*}
R> & \text{library(pixmap)} \\
R> & x = x[\text{order}(px, py),] \\
R> & r = x\$CH1I^0.25 \\
R> & g = x\$CH2I^0.25 \\
R> & b = \text{rep}(0, nrow(x)) \\
R> & rgb = \text{array}(c(r, g, b), \text{dim} = c(96, 96, 3)) \\
R> & \text{plot(pixmap(rgb, type = "rgb"))}
\end{align*}
\]
a. Read the help file for pixmap and understand what the above code is doing.
b. Try out other transformations than the 4-th root, like identity transformation, square root, logarithm, and observe their impact on the visual appearance of the image.

5.) **Calibration and variance stabilization.** Download the package VSN from http://www.dkfz.de/abt0840/whuber and install it. Subtract the background intensities CH1B, CH2B from the foreground intensities CH1I, CH2I. Use the function vsn to calibrate and transform, and plot the result.

```r
R> library(vsn)
R> y = cbind(x$CH1I - x$CH1B, x$CH2I - x$CH2B)
R> nv = vsn(y)
R> plot(nv)
```
6.) Reading multiple data files. In the folder data/alizadeh, you find a file samples.txt.

a. Read it into a data frame (use the function `read.delim` with the `as.is=T` option)

b. Create 4 matrices of dimensions 9216 × 8 that contain, respectively, CH1I, CH1B, CH2I, and CH2B intensities of the 9216 spots on the 8 slides with filenames are given in samples.txt.

c. Save the matrices into an XDR file.

d. Note: the bioconductor packages marrayInput and affy offer more comfortable methods for reading and managing data from a series of microarrays.

```r
R> datapath = "../data/alizadeh"
R> samples = read.delim(file.path(datapath, "samples.txt"), as.is = T)
R> samples

       name sampleid
   1 lc7b047    CLL-13
   2 lc7b048    CLL-13
   3 lc7b069    CLL-52
   4 lc7b070    CLL-39
   5 lc7b019  DLCL-0032
   6 lc7b056  DLCL-0024
```
R> nrspots = 9216
R> nrsamples = nrow(samples)
R> Gf = Gb = Rf = Rb = matrix(NA, nrow = nrspots, ncol = nrsamples)
R> for (i in 1:nrsamples) {
+ filename = paste(samples$name[i], "rex.DAT", sep = "")
+ dat = read.delim(file.path(datapath, filename))
+ Gf[, i] = dat$CH1I
+ Gb[, i] = dat$CH1B
+ Rf[, i] = dat$CH2I
+ Rb[, i] = dat$CH2B
+ }
R> save(Gf, Gb, Rf, Rb, file = "intensities.RData")

7.) **Different normalization methods.** In the following, we are going to identify genes that appear to be differentially transcribed between the 4 CLL samples and the 4 DLCL samples. For this, we will apply a number of different normalization strategies to the data and compare their results.

a. Download the packages Biobase, marrayClasses, marrayNorm, and multtest from http://www.bioconductor.org and install them.

b. Create a 3D array of dimensions $9216 \times 8 \times 3$ that contains, for all spots, the value of M (that is, the log-ratio or the generalized log-ratio), for the 8 slides and the following 3 different normalization methods:
 1. vsn (affine normalization and variance stabilization)
 2. maNorm with global median location normalization
 3. maNorm with loess for intensity- or A-dependent location normalization using the ‘loess’ smoother

c. Save the array into an XDR file.

R> library(marrayNorm)

R> nrmethods = 3
R> M = array(NA, dim = c(nrspots, nrsamples, nrmethods))
R> A = array(NA, dim = c(nrspots, nrsamples, nrmethods))
R> #
R> # vsn
R> # green in columns 1:8, red in 9:16
R> nw = vsn(cbind(Gf - Gb, Rf - Rb))
R> #
R> # global median and loess
R> mar = new("marrayRaw", maGf = Gf, maGb = Gb, maRf = Rf, maRb = Rb)
R> nm = maNorm(mar, norm = "median", echo = T)
8.) **Qualitatively compare the results.** Look at scatterplots of the values of M from the same slide, calculated with different normalization methods. Do the values generally agree? How do they differ?

```r
R> plot(M[, 4, 1], M[, 4, 2], pch = ".", xlab = "vsn", ylab = "loess", +     main = samples$name[4])
```

9.) **Testing for differential transcription.** Now we are ready to calculate test statistics and to select genes. *Note:* The number of replicates (4 versus 4) that we are considering here is very small and no solid conclusions about individual genes or individual samples will be derived from that. The full data set contains many more chips. Here we restrict ourselves to a few of them in order to keep calculations simple and not too slow for the purpose of this course.
a. Look at the function `t.test` from the package `ctest` (which is part of the base libraries), and at `mt.teststat` from the package `multtest`.

b. For each gene, and for each of the normalization methods, calculate the t-statistic for the CLL-to-DLBL class distinction. Store the result in a 9216 x 3 matrix. Which of the functions `t.test`, `mt.teststat` calculates faster? Look at the histogram of t-values that they produce; you may find extreme values like ‘3e38’ in there. Where do they come from?

c. How do the t-statistics agree between the different normalization methods?

```r
R> library(multtest)
R> classlabel = c(0, 0, 0, 0, 1, 1, 1, 1)
R> t = mt.teststat(M[, , 3], classlabel)
R> range(t, na.rm = T)
[1] -2.533819e+01 3.402823e+38
R> which(t > 1e+30)
[1] 2829 2930 2931
R> hist(t[t < 1e+30], 100)
```

Histogram of $t[t < 1e+30]$
R> calct = function(classlab, dat) {
+ t = mt.teststat(dat, classlab)
+ t[t > 1e+30] = NA
+ return(t)
+ }
R> t = matrix(NA, nrow = nrspots, ncol = nrmethods)
R> for (meth in 1:nrmethods) {
+ t[, meth] = calct(classlabel, M[, , meth])
+ }
R> #
R> par(mfrow = c(2, 2))
R> for (j in 2:nrmethods) {
+ for (i in 1:(j - 1)) {
+ plot(t[, i], t[, j], pch = ".", xlab = paste(i), ylab = paste(j))
+ lines(c(-30, 30), c(-30, 30), col = "red")
+ }
+ }
R> # alternatively: use splom from library(lattice)

10.) Biology. Look at the 5 top genes, and using the information in the file
.../data/alizadeh/scheme.htm, find out the curated gene names. Do they correspond to genes that are mentioned in the Alizadeh et al. paper?

```r
R> csw = read.delim(file.path(datapath, "chip_spot_well.tab.txt"),
+ as.is = T, header = F)
R> colnames(csw) = c("batch", "spot", "wellid")
R> csw[1:3, ]
  batch spot wellid
  1 lc3a 1 13633
  2 lc3a 2026 13634
  3 lc3a 2 13635
```

```r
R> wcn = read.delim(file.path(datapath, "well_cloneid_name.tab.txt"),
+ as.is = T, header = F)
R> colnames(wcn) = c("wellid", "cloneid", "name")
R> wcn[c(1, 51, 158), ]
   wellid cloneid name
   1 682638 683083 "btk=Bruton agammaglobulinemia tyrosine kinase"
   51 683083 683083 "Cyclin T2a"
   158 683739 683739 "BRCA2=Mutated in breast and ovarian cancer"
```

```r
R> #
R> topspots = order(abs(t[, 1]), decreasing = TRUE)[1:5]
R> wellid = csw$wellid[csw$batch == "lc7b" & csw$spot %in% topspots]
R> wcn[wcn$wellid %in% wellid, ]
   wellid cloneid name
   13036 13036 "Unknown"
   13394 13394 "UG Hs.120716 ESTs sc_id5514"
   17614 17614 "Protein tyrosine phosphatase, non-receptor type"
   17670 17670 "aryl hydrocarbon receptor (AhR)=AH-receptor=basic helix-loop-helix transcription fac"
   19440 19440 "Unknown"
```

11.) \textit{t}-thresholds. Designate as \textit{differentially expressed} those clones for which the absolute value of \textit{t} is larger than a certain threshold. What are the values of this threshold for our data, if we want to have a clone list length 10, 20, 50, 100,...?

```r
R> # clone list lengths
R> cll = c(10, 20, 50, 100, 200, 500, 1000)
R> threshold = matrix(NA, nrow = length(cll), ncol = nrmethods)
```
R> rownames(threshold) = paste(cll)
R> colnames(threshold) = c("vsn", "global median", "loess")
R>
R> for (meth in 1:nrmethods) {
+ st = sort(abs(t[, meth]), decreasing = TRUE)
+ for (j in 1:length(cll)) {
+ + threshold[j, meth] = st[cll[j]]
+ + }
+ }
R> threshold

 vsn global median loess
 10 16.665285 14.763376 15.796528
 20 12.801105 13.274832 13.770094
 50 9.857308 9.627267 10.485302
100 8.268596 8.037820 8.519700
200 6.701843 6.612137 6.921097
500 4.957255 4.793148 5.130494
1000 3.658167 3.528695 3.786914

12.) Permutations.

a. How many ways are there to split a set of 8 objects into two groups of 4 and 4? Use the function nchoosek from the file nchoosek.R to generate a numerical representation of these splits.

b. Prepare a matrix with 8 rows, corresponding to the 8 samples, and as many columns as there are splits. Set the matrix elements to 0 and 1, such that each column of the matrix represents a split.

R> source("nchoosek.R")
R> nck = nchoosek(7, 3)
R> nck

```
[1,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[2,] 2 2 2 2 2 3 3 3 3 4 4 4 5 5
[3,] 3 4 5 6 7 4 5 6 7 5 6 7 6 7 7
[1,] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3
[2,] 6 3 3 3 4 4 4 5 5 5 6 4
[3,] 7 4 5 6 7 5 6 7 6 7 7 5
[1,] 3 3 3 3 4 4 4 4 5
[2,] 4 4 5 5 6 5 5 6 6
[3,] 6 7 6 7 6 7 7 7 7
```

R> classlabel = matrix(0, nrow = nrsamples, ncol = ncol(nck))
R> for (p in 1:ncol(nck)) {

11
13.) False discovery rate (FDR). Now we want to apply these permutations to the data to estimate the FDR. Do the following for each normalization method:

a. For each of the splits, calculate the corresponding t-statistics for all genes.

b. For each of the splits, and for each of the above choices for clone list lengths and thresholds, calculate the number of clones that have an absolute t-value greater or equal to the threshold.

c. Calculate the median of these numbers across the splits. Divide this by the clone list length to obtain an estimate of the FDR.

```r
R> fdr = matrix(NA, nrow = length(cll), ncol = nrmethods, dimnames = dimnames(threshold))
R> for (meth in 1:nrmethods) {
  +  # permt is a 9216 x 35 matrix of t-values, with
  +  # rows corresponding to the clones
  +  # and columns to the different splits
  ```
```r
+ permr = apply(classlabel, 2, calct, M[, , meth])
+ for (j in 1:length(cll)) {
+   # pnrsel is a vector of length 35, with the
+   # number of clones that had t greater or
+   # equal to the threshold
+   pnrsel = apply(permr, 2, function(t) length(which(abs(t) >=
+       threshold[j, meth])))
+   fdr[j, meth] = median(pnrsel)/cll[j]
+ }
+
R> plot(range(cll), range(fdr), type = "n", log = "x", xlab = "No. of genes selected",
+     ylab = "Estimated FDR")
R> for (meth in 1:nrmethods) lines(cll, fdr[, meth], type = "b",
+     pch = 19, lty = meth)
R> legend(min(cll), max(fdr), colnames(fdr), lty = 1:nrmethods)

14.) In the directory ../data/Shipp, you find a number of Affymetrix CEL files and a corresponding CDF file.

a. Using the package affy, load them into a probe level object (Plob).
b. Look at the spatial distribution of intensities on the chips.
c. Normalize the data and calculate probe set summary values.

```r
R> library(affy)
R> oldwd = getwd()
R> setwd("../data/Shipp")
R> dat = ReadAffy()
R> # show images of probe data
R> image(dat)
R> # calculation probe set summaries
R> e = express(dat)
R> # scatterplot first versus second sample
R> plot(exprs(e1), pch = ",")
```

15.) **Prepare for the classification exercises on Thursday.** Check whether the packages `e1071` and `rpam` are installed on your computer. If not, install them.