An introduction to R

Course in Practical Microarray Analysis Heidelberg 23.-27.9.2002 Wolfgang Huber

What this is

- A short, highly incomplete tour around some of the basic concepts of R as a programming language
- Some hints on how to obtain documentation on the many library functions (packages)

• Followed by exercises which you may solve yourself, and which take you all the way from obtaining a set of image-processed microarray files to producing and assessing lists of differentially expressed genes

R, S and S-plus

S: an interactive environment for data analysis developed at Bell Laboratories since 1976 1988 – S2: RA Becker, JM Chambers, A Wilks 1992 – S3: JM Chambers, TJ Hastie 1998 – S4: JM Chambers

Exclusively licensed by *AT&T/Lucent* to *Insightful Corporation*, Seattle WA. Product name: "S-plus".

Implementation languages C, Fortran.

See:

http://cm.bell-labs.com/cm/ms/departments/sia/S/history.html

R: initially written by Ross Ihaka and Robert Gentleman at Dep. of Statistics of U of Auckland, New Zealand during 1990s.

Since 1997: international "R-core" team of ca. 15 people with access to common CVS archive.

GNU General Public License (GPL)

- can be used by anyone for any purpose
- contagious

Open Source -quality control! -efficient bug tracking and fixing system supported by the user community

What R does and does not

o data handling and storage: numeric, textual

o matrix algebra

hash tables and regular expressions

o high-level data analytic and statistical functions

o classes ("OO")

o graphics

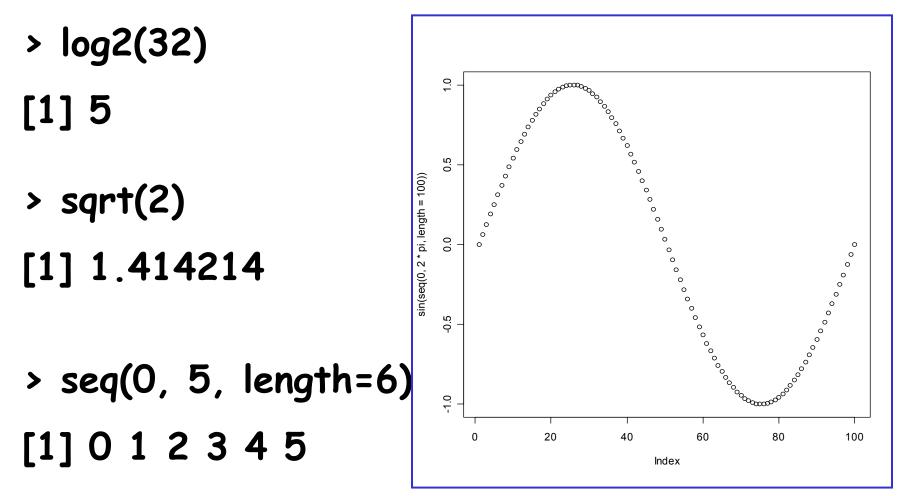
o programming language: loops, branching, subroutines o is not a database, but connects to DBMSs

o has no graphical user interfaces, but connects to Java, TclTk

language interpreter
 can be very slow, but
 allows to call own C/C++
 code

o no spreadsheet view of data, but connects to Excel/MsOffice

o no professional / commercial support



 Packaging: a crucial infrastructure to efficiently produce, load and keep consistent software libraries from (many) different sources / authors

o Statistics: most packages deal with statistics and data analysis

• State of the art: many statistical researchers provide their methods as R packages

R as a calculator

> plot(sin(seq(0, 2*pi, length=100)))

variables

> a = 49 > sqrt(a) [1] 7

numeric

```
> a = "The dog ate my homework"
> sub("dog","cat",a)
[1] "The cat ate my homework"
```

character string

```
> a = (1+1==3)
```

> a [1] FALSE

logical

missing values

Variables of each data type (numeric, character, logical) can also take the value NA: not available.

- NA is not the same as 0
- NA is not the same as ""
- NA is not the same as FALSE

Any operations (calculations, comparisons) that involve NA may or may not produce NA:

```
> NA==1
[1] NA
> 1+NA
[1] NA
> max(c(NA, 4, 7))
[1] NA
> max(c(NA, 4, 7), na.rm=T)
[1] 7
```

> NA | TRUE
[1] TRUE
> NA & TRUE
[1] NA

functions and operators

Functions do things with data "Input": function arguments (0,1,2,...) "Output": function result (exactly one)

```
Example:
add = function(a,b)
{ result = a+b
return(result) }
```

Operators:

Short-cut writing for frequently used functions of one or two arguments. Examples: + - * / ! & | %%

functions and operators

Functions do things with data "Input": function arguments (0,1,2,...) "Output": function result (exactly one)

Exceptions to the rule:

Functions may also use data that sits around in other places, not just in their argument list: "scoping rules"*

Functions may also do other things than returning a result. E.g., plot something on the screen: "side effects"

*Lexical scope and Statistical Computing. R. Gentleman, R. Ihaka, Journal of Computational and Graphical Statistics, **9**(3), p. 491-508 (2000).

vectors, matrices and arrays
vector: an ordered collection of data of the
same type
> a = c(1,2,3)
> a*2
[1] 2 4 6

Example: the mean spot intensities of all 15488 spots on a chip: a vector of 15488 numbers

In R, a single number is the special case of a vector with 1 element.

Other vector types: character strings, logical

vectors, matrices and arrays

matrix: a rectangular table of data of the same type

example: the expression values for 10000 genes for 30 tissue biopsies: a matrix with 10000 rows and 30 columns.

array: 3-,4-,...dimensional matrix

example: the red and green foreground and background values for 20000 spots on 120 chips: a 4 x 20000 x 120 (3D) array.

Lists

vector: an ordered collection of data of the same type.

- > a = c(7,5,1)
- > a[2]
- [1] 5

list: an ordered collection of data of arbitrary types. > doe = list(name="john",age=28,married=F) > doe\$name [1] "john" > doe\$age [1] 28

Typically, vector elements are accessed by their index (an integer), list elements by their name (a character string). But both types support both access methods.

data frame: is supposed to represent the typical data table that researchers come up with – like a spreadsheet.

It is a rectangular table with rows and columns; data within each column has the same type (e.g. number, text, logical), but different columns may have different types.

Example:

> a

	localisation	tumorsize	progress
XX348	proximal	6.3	FALSE
XX234	distal	8.0	TRUE
XX987	proximal	10.0	FALSE

Factors

A character string can contain arbitrary text. Sometimes it is useful to use a limited vocabulary, with a small number of allowed words. A factor is a variable that can only take such a limited number of values, which are called levels.

> a

<pre>[1] Kolon(Rektum) [4] Magen [7] Magen</pre>	Magen Magen Magen(retrogastral)	Magen Retroperitoneal Magen		
Levels: Kolon(Rektum)		•		
. ,	Magen Magen(retroga	istial)		
Retroperitoneal				
> class(a)				
[1] "factor"				
<pre>> as.character(a)</pre>				
[1] "Kolon(Rektum)" '	"Magen"	"Magen"		
[4] "Magen" '	"Magen"	"Retroperitoneal"		
[7] "Magen" '	"Magen(retrogastral)"	"Magen"		
> as.integer(a)				
[1] 1 2 2 2 2 4 2 3 2				
<pre>> as.integer(as.character(a))</pre>				
[1] NA				
Warning message:				
NAs introduced by coerd	cion			

Subsetting

Individual elements of a vector, matrix, array or data frame are accessed with "[]" by specifying their index, or their name > a localisation tumorsize progress proximal 6.3 XX348 0 XX234 distal 8.0 1 proximal 10.0 XX987 0 > a[3, 2][1] 10 > a["XX987", "tumorsize"] [1] 10> a["XX987",] localisation tumorsize progress XX987 proximal 10 0

> a localisation tumorsize progress Subsetting 6.3 XX348 proximal 0 distal XX234 8.0 1 XX987 proximal 10.0 0 > a[c(1,3),]subset rows by localisation tumorsize progress a vector of proximal 6.3 XX348 0 proximal 10.0 indices XX987 0 > a[c(T,F,T),]localisation tumorsize progress subset rows by proximal 6.3 XX348 0 a logical vector proximal XX987 10.0 0 > a\$localisation subset a column [1] "proximal" "distal" "proximal" comparison resulting > a\$localisation=="proximal" [1] TRUE FALSE TRUE in logical vector > a[a\$localisation=="proximal",] localisation tumorsize progress subset the XX348 proximal 6.3 0 selected rows **XX987** proximal 10.0 0


```
if (logical expression) {
   statements
} else {
   alternative statements
}
```

else branch is optional

Loops

When the same or similar tasks need to be performed multiple times; for all elements of a list; for all columns of an array; etc.

```
for(i in 1:10) {
    print(i*i)
}
i=1
while(i<=10) {
    print(i*i)
    i=i+sqrt(i)
}</pre>
```

lapply, sapply, apply

When the same or similar tasks need to be performed multiple times for all elements of a list or for all columns of an array. May be easier and faster than "for" loops

```
lapply( li, fct )
```

To each element of the list 11, the function fct is applied. The result is a list whose elements are the individual fct results.

```
> li = list("klaus","martin","georg")
```

- > lapply(li, toupper)
- > [[1]]
- > [1] "KLAUS"
- > [[2]]
- > [1] "MARTIN"
- > [[3]]
- > [1] "GEORG"

lapply, sapply, apply

sapply(li, fct)
Like apply, but tries to simplify the result, by converting it into
a vector or array of appropriate size

```
> li = list("klaus","martin","georg")
> sapply(li, toupper)
[1] "KLAUS" "MARTIN" "GEORG"
```

```
> fct = function(x) { return(c(x, x*x, x*x*x)) }
> sapply(1:5, fct)
      [,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 1 4 9 16 25
[3,] 1 8 27 64 125
```

apply

```
apply( arr, margin, fct )
Applies the function fct along some dimensions of the
array arr, according to margin, and returns a vector or
```

array of the appropriate size.

> x

	[,1]	[,2]	[,3]
[1,]	5	7	0
[2,]	7	9	8
[3,]	4	6	7
[4,]	6	3	5

> apply(x, 1, sum)
[1] 12 24 17 14

> apply(x, 2, sum)
[1] 22 25 20

hash tables

In vectors, lists, dataframes, arrays, elements are stored one after another, and are accessed in that order by their offset (or: index), which is an integer number.

Sometimes, consecutive integer numbers are not the "natural" way to access: e.g., gene names, oligo sequences

E.g., if we want to look for a particular gene name in a long list or data frame with tens of thousands of genes, the linear search may be very slow.

Solution: instead of list, use a hash table. It sorts, stores and accesses its elements in a way similar to a telephone book.

hash tables

In R, a hash table is the same as a workspace for variables, which is the same as an environment.

```
> tab = new.env(hash=T)
> assign("cenp-e", list(cloneid=682777,
    description="putative kinetochore motor ..."), env=tab)
> assign("btk", list(cloneid=682638,
    fullname="Bruton agammaglobulinemia tyrosine kinase"), env=tab)
> ls(env=tab)
[1] "btk" "cenp-e"
> get("btk", env=tab)
$cloneid
[1] 682638
$fullname
[1] "Bruton agammaglobulinemia tyrosine kinase"
```

regular expressions

A tool for text matching and replacement which is available in similar forms in many programming languages (Perl, Unix shells, Java)

```
> a = c("CENP-F", "Ly-9", "MLN50", "ZNF191", "CLH-17")
> grep("L", a)
[1] 2 3 5
> grep("L", a, value=T)
[1] "Ly-9" "MLN50" "CLH-17"
> grep("^L", a, value=T)
[1] "Ly-9"
> grep("[0-9]", a, value=T)
[1] "Ly-9" "MLN50" "ZNF191" "CLH-17"
> gsub("[0-9]", "X", a)
[1] "CENP-F" "Ly-X" "MLNXX" "ZNFXXX" "CLH-XX"
```

primitive (or: atomic) data types in R are:

numeric (integer, double, complex) character logical function

out of these, vectors, arrays, lists can be built.

Object: a collection of atomic variables and/or other objects that belong together

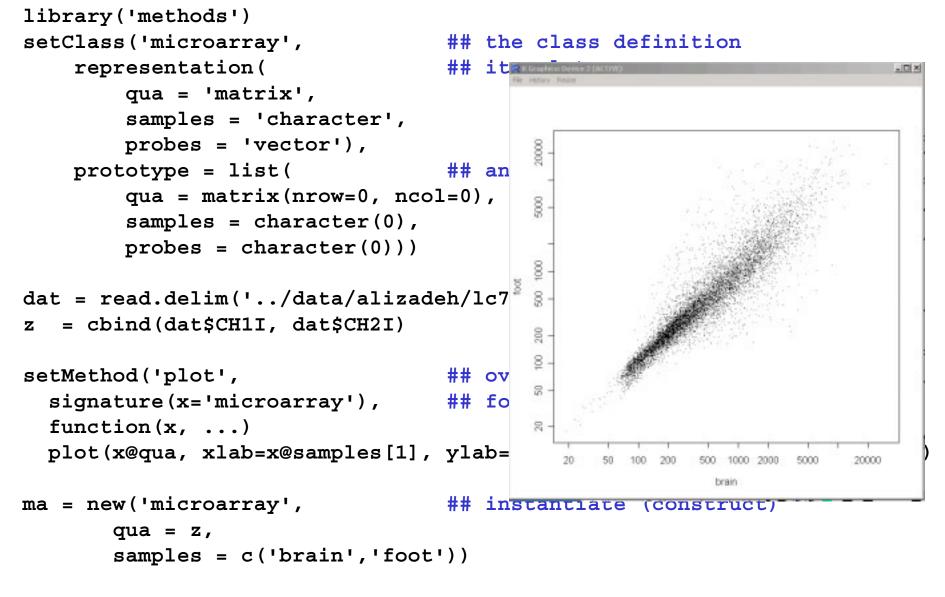
- Example: a microarray experiment
- probe intensities
- patient data (tissue location, diagnosis, follow-up)
- gene data (sequence, IDs, annotation)

Parlance: class: the "abstract" definition of it object: a concrete instance method: other word for 'function' slot: a component of an object

Advantages:

Encapsulation (can use the objects and methods someone else has written without having to care about the internals)

Generic functions (e.g. plot, print)


Inheritance (hierarchical organization of complexity)

Caveat:

Overcomplicated, baroque program architecture...

```
library('methods')
setClass('microarray', ## the class definition
    representation(
                              ## its slots
       qua = 'matrix',
       samples = 'character',
       probes = 'vector'),
   prototype = list( ## and default values
       qua = matrix(nrow=0, ncol=0),
       samples = character(0),
       probes = character(0)))
dat = read.delim('../data/alizadeh/lc7b017rex.DAT')
z = cbind(dat$CH1I, dat$CH2I)
setMethod('plot',
                             ## overload generic function `plot'
  signature(x='microarray'), ## for this new class
  function(x, ...)
  plot(x@qua, xlab=x@samples[1], ylab=x@samples[2], pch='.', log='xy'))
ma = new('microarray',
                      ## instantiate (construct)
      qua = z,
      samples = c('brain','foot'))
```

```
plot(ma)
```


plot(ma)

Storing data

Every R object can be stored into and restored from a file with the commands "save" and "load".

This uses the XDR (external data representation) standard of Sun Microsystems and others, and is portable between MS-Windows, Unix, Mac.

- > save(x, file="x.Rdata")
- > load("x.Rdata")

Importing and exporting data

There are many ways to get data into R and out of R.

Most programs (e.g. Excel), as well as humans, know how to deal with rectangular tables in the form of tab-delimited text files.

> x = read.delim("filename.txt")
also: read.table, read.csv

> write.table(x, file="x.txt", sep="\t")

Importing data: caveats

Type conversions: by default, the read functions try to guess and autoconvert the data types of the different columns (e.g. number, factor, character). There are options as.is and colClasses to control this - read the online help

Special characters: the delimiter character (space, comma, tabulator) and the end-of-line character cannot be part of a data field. To circumvent this, text may be "quoted". However, if this option is used (the default), then the quote characters themselves cannot be part of a data field. Except if they themselves are within quotes...

Understand the conventions your input files use and set the quote options accordingly.

Getting help

Details about a specific command whose name you know (input arguments, options, algorithm, results):

•	R Information - He	lp for `t.test'		<u>-UX</u>
	File Edit View			
• • • •	t.test	package:ctest	R Documentation	-
>? t.test	Student's t-Tes	t		
	Description:			
	Performs of	ne and two sample t-tests on	vectors of data.	
or	Usage:			
	mu con	= 0, paired = FALSE, var.equa f.level = 0.95,)		
		mula, data, subset, na.action	,)	
<pre>>help(t.test)</pre>	Arguments:			
	x: a numeric vector of data values.			
	y: an op	tional numeric vector data va	lues.	
	alternative: a must `"les	character string specifying t be one of `"two.sided"' (defa s"'. You can specify just th	he alternative hypothesis, ult), `"greater"' or e initial letter.	
	mu: a num in me	ber indicating the true value ans if you are performing a t	of the mean (or difference wo sample test).	
	paired: a log	ical indicating whether you w	ant a paired t-test.	
	var.equal: a lo	gical variable indicating whe	ther to treat the two	•
	4			▶ //.

• HTML search engine

• search for topics with regular expressions: "help.search"

🖀 R: Search Engine - Microsoft Internet Explorer bereitgestellt von Lycos Europe	<u>-</u> □×
Datei Bearbeiten Ansicht Favoriten Extras ?	11
🗘 Zurück 🔹 🔿 🔹 🙆 🚰 🥘 Suchen 🕋 Favoriten 🍏 🖏 🖬 🛃 🖬 🗐	
Adresse 🖉 C:\Programme\R\rw1051\doc\html\search\SearchEngine.html	→ 🖉 Wechseln zu
Search Engine 📿	<u>*</u>
Search	
You can search for keywords, function and data names and text in help page titles	3.
Usage: Enter a string in the text field below and hit RETURN.	
calibration	
Keywords	
Keywords by Topic	
Basics <u>attribute</u>: Data Attributes <u>chron</u>: Dates and Times <u>classes</u>: Data Types (not OO) <u>NA</u>: Missing Values <u>category</u>: Categorical Data 	-1
Fertig	

Web sites

www.r-project.org cran.r-project.org www.bioconductor.org

Full text search: www.r-project.org or www.google.com with '... site:.r-project.org' or other R-specific keywords