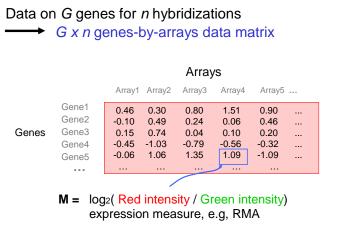
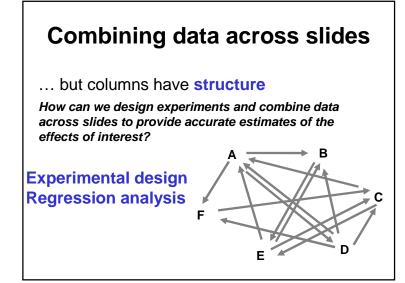


- Experimental design for cDNA microarray experiments.
- Combining data across slides for cDNA microarray experiments.
- Multiple testing.
- A 2x2 factorial microarray experiment.

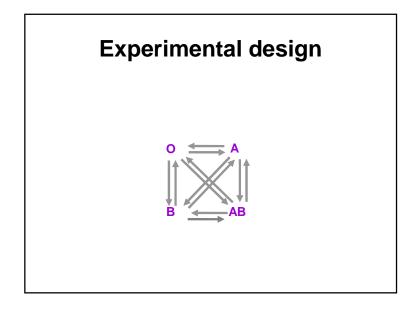
Combining data across slides





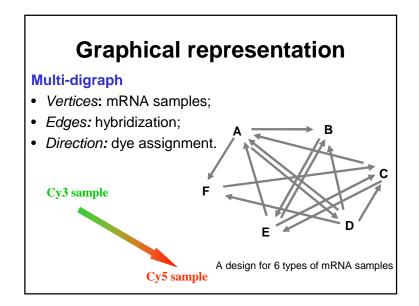
Experimental design

Proper experimental design is needed to ensure that questions of interest *can* be answered and that this can be done **accurately**, given experimental constraints, such as cost of reagents and availability of mRNA.



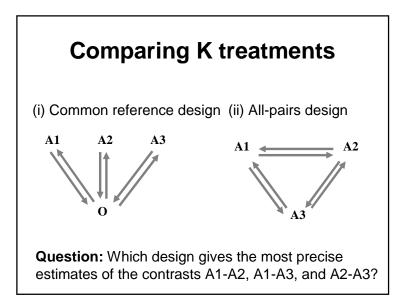
Experimental design

- Design of the array itself
 - which cDNA probe sequences to print;
 - whether to use replicated probes;
 - which control sequences;
 - how many and where these should be printed.
- Allocation of target samples to the slides
 - pairing of mRNA samples for hybridization;
 - dye assignments;
 - type and number of replicates.



Graphical representation

- The structure of the graph determines which effects can be estimated and the precision of the estimates.
 - Two mRNA samples can be compared only if there is a path joining the corresponding two vertices.
 - The precision of the estimated contrast then depends on the number of paths joining the two vertices and is inversely related to the length of the paths.
- Direct comparisons within slides yield more precise estimates than indirect ones between slides.



Comparing K treatments

• **Answer:** The all-pairs design is better, because comparisons are done within slides.

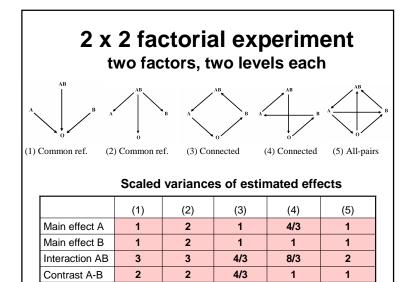
For the same precision, the common reference design requires three times as many hybridizations or slides as the all-pairs design.

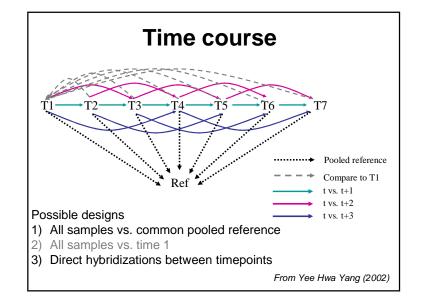
• In general, for K treatments

Relative efficiency

 $= 2K/(K-1) = 4, 3, 8/3, \dots \rightarrow 2.$

For the same precision, the common reference design requires 2K/(K-1) times as many hybridizations as the all-pairs design.





Desigr	a choices in time course experiments		t vs. t+1		t vs	. t+2		
		T1T2	T2T3	T3T4	T1T3	T2T4	T1T4	Ave
N=3	A) T1 as common reference	1	2	2	1	2	1	1.5
	$T1 \longrightarrow T2$ $T3$ T	4						
	B) Direct hybridization	1	1	1	2	2	3	1.6
	$T1 \longrightarrow T2 \longrightarrow T3 \longrightarrow T$	4						
N=4	C) Common reference T1 T2 T3 T Ref	4 2	2	2	2	2	2	2
	D) T1 as common ref + more	.67	.67	1.67	.67	1.67	1	1.0
	$T1 \longrightarrow T2 \longrightarrow T3$ T	4						
	E) Direct hybridization choice 1	.75	.75	.75	1	1	.75	.83
	$T1 \longrightarrow T2 \longrightarrow T3 \longrightarrow T$	4						
	F) Direct hybridization choice 2	1	.75	1	.75	.75	.75	.83
	$T1$ $T2 \rightarrow T3$ T	4						

Experimental design

 In addition to experimental constraints, design decisions should be guided by the knowledge of which effects are of greater interest to the investigator.

E.g. which main effects, which interactions.

• The experimenter should thus decide on the comparisons for which he wants the most precision and these should be made within slides to the extent possible.

Experimental design

- N.B. Efficiency can be measured in terms of different quantities
 - number of slides or hybridizations;
 - units of biological material, e.g. amount of mRNA for one channel.

Issues in experimental design

- Replication.
- Type of replication:
 - within or between slides replicates;
 - biological or technical replicates
 i.e., different vs. same extraction:
 generalizability vs. reproducibility.
- Sample size and power calculations.
- Dye assignments.
- Combining data across slides and sets of experiments:

regression analysis ... next.

2 x 2 factorial experiment two factors, two levels each

Study the **joint** effect of two treatments (e.g. drugs), A and B, say, on the gene expression response of tumor cells.

There are four possible treatment combinations

AB: both treatments are administered;

A : only treatment A is administered;

- B : only treatment B is administered;
- O : cells are untreated.

0

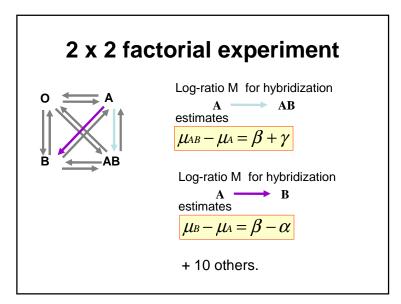
n=12

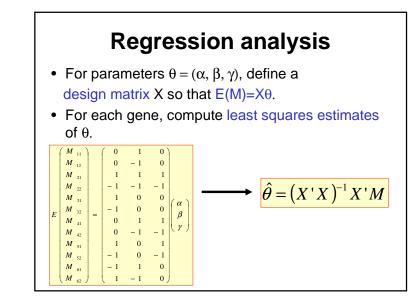
2 x 2 factorial experiment

For **each** gene, consider a linear model for the joint effect of treatments A and B on the expression response.

$$\mu_{AB} = \mu + \alpha + \beta + \gamma$$
$$\mu_{A} = \mu + \alpha$$
$$\mu_{B} = \mu + \beta$$
$$\mu_{O} = \mu$$

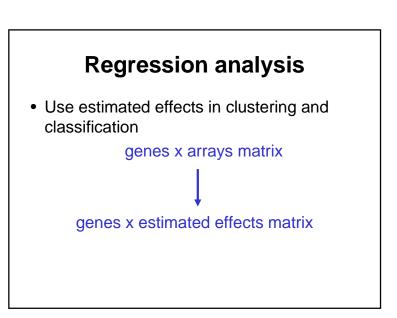
μ: baseline effect; α: treatment A main effect; β: treatment B main effect; γ: interaction between treatments A and B.

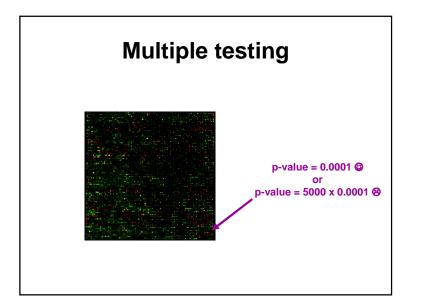




Regression analysis Combine data across slides for complex designs can "link" different sets of hybridizations.

- Obtain unbiased and efficient estimates of the effects of interest (BLUE).
- Obtain measures of precision for estimated effects.
- Perform hypothesis testing.
- Extensions of linear models
 - generalized linear models;
 - robust weighted regression, etc.





Differential gene expression

- Identify genes whose expression levels are associated with a response or covariate of interest
 - clinical outcome such as survival, response to treatment, tumor class;
 - covariate such as treatment, dose, time.
- Estimation: estimate effects of interest (e.g. difference in means, slope, interaction) and variability of these estimates.
- Testing: assess the statistical significance of the observed associations.

Hypothesis testing

- Test for each gene the null hypothesis of no differential expression, e.g. using t- or F-statistic. Two types of errors can be committed
- Type I error or false positive
 - say that a gene is differentially expressed when it is not, i.e.
 - reject a true null hypothesis.
- Type II error or false negative
 - fail to identify a truly differentially expressed gene, i.e.
 - fail to reject a *false null* hypothesis.

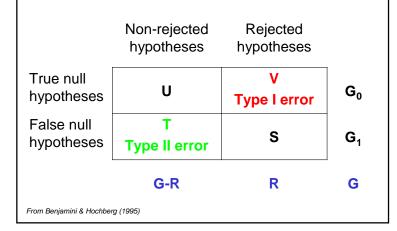
Multiple hypothesis testing

- Large multiplicity problem: thousands of hypotheses are tested simultaneously!
 - Increased chance of false positives.
 - E.g. chance of at least one p-value < α for G independent tests is $1-(1-\alpha)^G$ and converges to one as G increases.
 - For G=1,000 and α = 0.01, this chance is 0.9999568!
 - Individual p-values of 0.01 no longer correspond to significant findings.
- Need to adjust for multiple testing when assessing the statistical significance of the observed associations.

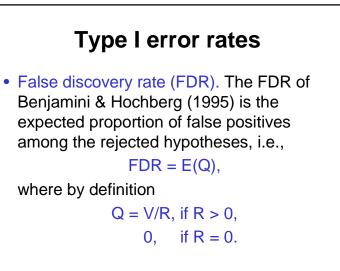
Multiple hypothesis testing

- Define an appropriate Type I error or false positive rate.
- · Develop multiple testing procedures that
 - provide strong control of this error rate,
 - are powerful (few false negatives),
 - take into account the joint distribution of the test statistics.
- Report adjusted p-values for each gene which reflect the overall Type I error rate for the experiment.
- Resampling methods are useful tools to deal with the unknown joint distribution of the test statistics.

Multiple hypothesis testing



Type I error rates Per-family error rate (PFER). Expected number of false positives, i.e., PFER = E(V). Per-comparison error rate (PCER). Expected value of (# false positives / # of hypotheses), i.e., PCER = E(V)/G. Family-wise error rate (FWER). Probability of at least one false positive, i.e., FWER = p(V > 0).



Strong control

- N.B. Expectations and probabilities above are conditional on which hypotheses are true.
- Strong control. Control of the Type I error rate under any combination of true and false hypotheses.
- Weak control. Control of the Type I error rate under only the complete null hypothesis, i.e., when all null hypotheses are true.
- Strong control is essential in microarray experiments.

Comparison of error rates

• In general, for a given multiple testing procedure,

 $PCER \leq FWER \leq PFER$

and

 $FDR \leq FWER$

with FDR = FWER under the complete null.

• Thus, for a fixed criterion α for controlling the Type I error rates, the order reverses for the number of rejected hypotheses R: procedures controlling the FWER are generally more conservative than those controlling either the FDR or PCER.

Adjusted p-values

- Given any test procedure, the adjusted p-value for a single gene g can be defined as the level of the entire test procedure at which gene g would just be declared differentially expressed.
- Adjusted p-values reflect for each gene the overall experiment Type I error rate when genes with a smaller p-value are declared differentially expressed.
- Can be estimated by resampling, e.g. permutation or bootstrap.

Multiple testing procedures

- Strong control of FWER
 - Bonferroni: single-step;
 - Holm (1979): step-down;
 - Hochberg (1986)*: step-up;
 - Westfall & Young (1993): step-down maxT and minP, exploit *joint* distribution of test statistics.
- Strong control of FDR
 - Benjamini & Hochberg (1995)*: step-up;
 - Benjamini & Yekutieli (2001): step-up.

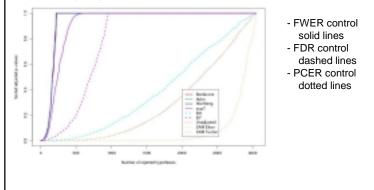
*some distributional assumptions required.

Multiple testing procedures

- Golub et al. (1999): neighborhood analysis
 - weak control only, problematic definition of error rate.
- Tusher et al. (2001): SAM
 - t- or F-like statistics;
 - similar to univariate test with asymmetric cut-offs;
 - permutation procedure controlling PCER;
 - the SAM estimate of the FDR is $E_0(V)/R$ -- can be greater than one.

Multiple testing procedures

Sorted adjusted p-values for different multiple testing procedures Golub et al. (1999) ALL AML data



A FAQ

- **Q:** What about pre-screening to reduce the number of tests with the aim of increasing power?
- A: Type I error is controlled in situations where
 - we only focus on a subset of genes that are of interest
 selected *before* looking at the data;
 - the statistic used for screening is independent of the test statistic under the null.
- Other situations still need to be better understood.

Discussion

- Microarray experiments have revived interest in multiple testing
 - lots of papers;
 - old methods with new names;
 - new methods with inadequate or unknown control properties;
 - a lot of confusion!
- New proposals should be formulated precisely, within the standard statistical framework, to allow a clear assessment of the properties of different procedures.

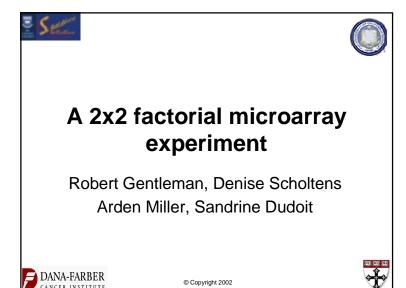
R multiple testing software

- Bioconductor R multtest package.
- Multiple testing procedures for controlling
 - FWER: Bonferroni, Holm (1979), Hochberg (1986), Westfall & Young (1993) maxT and minP.
 - FDR: Benjamini & Hochberg (1995), Benjamini & Yekutieli (2001).
- Tests based on t- or F-statistics for one- and two-factor designs.
- Permutation procedures for estimating adjusted p-values.
- Fast permutation algorithm for minP adjusted p-values.
- Documentation: tutorial on multiple testing.

More detailed slides and references in

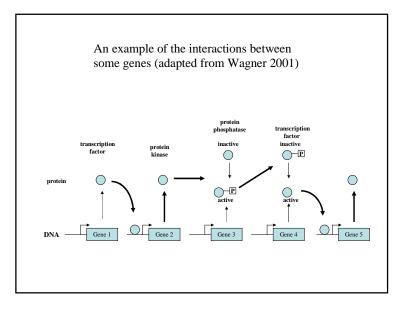
Multiple testing in DNA microarray experiments

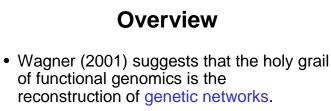
available at www.bioconductor.org



Complexity of genomic data

- The functioning of cells is a complex and highly structured process.
- In the next slide we show a stylized biochemical pathway (adapted from Wagner, 2001).
- There are transcription factors, protein kinase and protein phosphatase reactions.
- Tools are being developed that allow us to explore this functioning in a multitude of different ways.





- In this tutorial we examine some methods for doing this in factorial genome wide RNA expression experiments.
- Such experiments are easy to carry out and are becoming widespread. Tools for analyzing them are badly needed.

Gene effects

- A factor can either inhibit or enhance the production of mRNA for any gene.
- The inhibition or enhancement of mRNA production for any given gene can affect transcription for other genes either through inhibition or enhancement.

Targets

- We define a target of a factor to be a gene whose expression of mRNA is altered by the presence of the factor.
- A primary target is a target that is directly affected by the factor.
- A secondary target is a target whose transcription is altered only via the effects of some other genes, i.e., can be traced back to one or more primary targets.

Factorial experiments

- We assume that there are two factors of interest, F_1 and F_2 .
- A 2x2 microarray experiment can be used to measure the expression response (mRNA level) of each gene under the four conditions
 - nothing
 - F1 alone
 - F₂ alone
 - F_1 and F_2 .

Factorial experiments

- Experimental units depend on the population of interest (i.e., for which the inference is desired). They may be cells from the same cell line, patients, or different inbred model organisms.
- Questions of interest often involve identifying which genes are directly affected by the two factors F₁ and F₂.

Factorial experiments

- We do not just observe changes in the genes that have been directly affected by the factors (primary targets).
- We also observe changes in any other genes whose expression levels are affected by changes in the primary targets (secondary targets).
- The addition of a judiciously chosen second factor (say one such as cyclohexamide, CX, that inhibits translation) will often allow us to isolate the primary targets from the secondary targets.

CX experiment

- There are two factors
 - Estrogen, E: known to affect transcription of various genes (some known, some unknown).
 - Cyclohexamide, CX: known to stop all translation (with very few exceptions).
- The design is a classical 2x2 factorial design, with two replicates.
- We are interested in the main effects and interactions for E and CX.

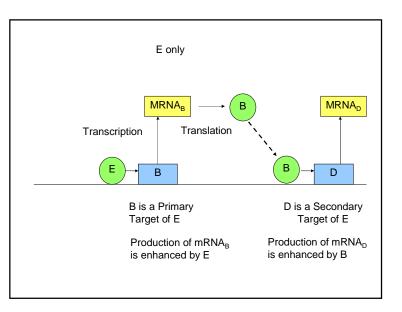
CX experiment

- We identify as targets all genes whose expression of mRNA is affected by the application of E.
- A target can be either primary or secondary
 - primary if E directly affects expression of mRNA.
 - secondary if mRNA production is affected by some other gene and can be traced back to a primary target.

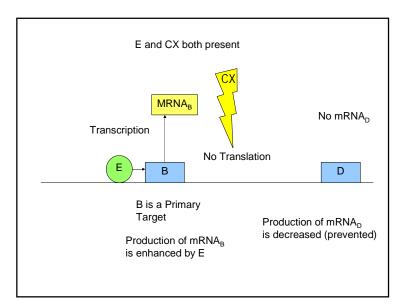
Scenario 1

- Assume that there are two related genes, B and D, where
 - B is a primary target of E,
 - D is a secondary target only via B.
- Neither is expressed initially.
- E causes B to be expressed and this in turn causes D to be expressed.
- The addition of CX by itself may not affect expression of either B or D.

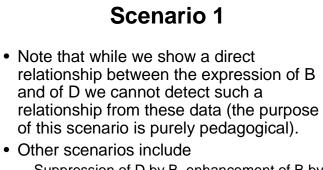
No factors applied	
В	D
Gene B is not active	Gene D is not active



- In the presence of both CX and E we see increased expression of mRNA_B but not of mRNA_D.
- CX stops translation of B and hence transcription of D.
- This will be one of the principles we can use to differentiate between primary targets of E (such as B) and secondary targets of E (such as D).



Nothing	Low	Low
E	High	High
CX	Low(?)	Low (?)



- Suppression of D by B, enhancement of B by E.
- Enhancement of D by B, and suppression of B by E.

CX experiment

 Assume the following linear model for the observed expression response (possibly on transformed data) of any given gene

$$y_{ig} = \mu_g + \beta_{Eg} x_{1i} + \beta_{CXg} x_{2i} + \beta_{E:CX,g} x_{1i} x_{2i} + \varepsilon_{ig}$$

- *i* indexes chips and *g* indexes genes.
- x₁ indicates the presence of E and x₂ indicates the presence of CX.

Inference

- The 2x2 CX microarray experiment measures the expression response of each gene under each of the four factor combinations.
- But there is a difference, B is a primary target of E, while D is a secondary target of E.

Inference

- If gene X is any target for E, the level of mRNA_X might not change when E is added.
- mRNA_X might already be being made as fast as possible, so addition of E has no effect.
- Production of mRNA_x might already be suppressed by some other compound.
- A true baseline would help in resolving these situations.

Inference

- The introduction of CX provides a form of baseline.
- Since (among other things) CX halts translation we should be able to use the presence or absence of CX to find out about primary versus secondary targets.

Inference

- For any gene we can interpret the coefficients in the linear model as follows.
- The parameter β_{E} can be interpreted as the main effect of E.
- Genes for which β_E is different from zero are potential targets.
- As noted previously, not all targets will have β_E different from zero.

Inference

- The parameter β_{CX} can be interpreted as the main effect of CX.
- If β_{CX} is different from zero, this suggests that production of mRNA is translationally regulated.
- The interpretation of the interaction $\beta_{\text{E:CX}}$ is more difficult.

Primary targets

- Consider the case where we have only CX and CX+E.
- Since CX halts all translation, then any differences between the condition where CX alone is present and CX+E is present should indicate primary targets of E.
- This is equivalent to testing the hypothesis $H_0: \mu+\beta_E+\beta_{CX}+\beta_{E:CX} = \mu+\beta_{CX}$, i.e., $H_0: \beta_E+\beta_{E:CX} = 0$

Primary targets

- Genes for which the hypothesis $H_0: \mu+\beta_E+\beta_{CX}+\beta_{E:CX} = \mu+\beta_{CX}$ is rejected are candidates for primary targets.
- Those with β_E different from zero, but for which we do not reject H_0 , are secondary targets.
- It seems likely that some inference may be drawn from the relationship between β_E and $\beta_{E:CX}$, their signs and their significance levels.

Scenario 1			
	Primary	Secondary	
β_{E}	> 0	> 0	
β _{Cx}	= 0	= 0	
$\beta_{E:CX}$	= 0	- β _E	

Limitations

- While we may identify genes that are potentially primary targets and those that are potentially secondary targets we cannot identify gene gene interactions, or feedback loops.
- We can observe the effects but not attribute them.
- The use of relevant metadata, biological and publication, seems pertinent and could help resolve some of the interactions.

Factorial experiments

- These experiments can be contrasted with those proposed by Wagner (2001).
- He proposes perturbing each gene in the genome of interest and observing the gene specific effects.
- We consider very few experiments and observe genome wide changes and hence less specific information.
- The two methods can be complementary since the results of the genome wide study could be used to design several single gene experiments.

Methylation experiments

- Methylation inhibits transcription of specific genes.
- If a factor that demethylates the genome were available, then one could, in principle, determine which genes were methylated (or affected by methylated genes).
- However, we could not determine which genes were primary and which were secondary targets.

Phosphorylation experiments

- Many cellular reactions are carried out using energy that is provided by the ADP ATP phosphorylation mechanism.
- If a simple mechanism was available for halting this process then that could be used as a factor in these experiments and genes whose transcription is affected by phosphorylation could be identified.