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Outline
• Experimental design for cDNA microarray

experiments.

• Combining data across slides for cDNA
microarray experiments.

• Multiple testing.

• A 2x2 factorial microarray experiment.

Combining data across slides

Genes

Arrays

M = log2( Red intensity / Green intensity)
expression measure, e.g, RMA

0.46 0.30 0.80 1.51 0.90 ...
-0.10 0.49 0.24 0.06 0.46 ...
0.15 0.74 0.04 0.10 0.20 ...
-0.45 -1.03 -0.79 -0.56 -0.32 ...
-0.06 1.06 1.35 1.09 -1.09 ...
…           …           …           …           …

Data on G genes for n hybridizations

Array1   Array2     Array3      Array4 Array5 …

Gene2
Gene1

Gene3

Gene5
Gene4

G x n genes-by-arrays data matrix

…
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Combining data across slides

D

F

BA

C

E

… but columns have structure
How can we design experiments and combine data 
across slides to provide accurate estimates of the 
effects of interest?

Experimental design
Regression analysis

Experimental design

O A

B AB

Experimental design

Proper experimental design is needed 
to ensure that questions of interest can
be answered and that this can be done 
accurately, given experimental 
constraints, such as cost of reagents 
and availability of mRNA.

Experimental design
• Design of the array itself 

– which cDNA probe sequences to print;
– whether to use replicated probes;
– which control sequences;
– how many and where these should be printed.

• Allocation of target samples to the slides 
– pairing of mRNA samples for hybridization;
– dye assignments;
– type and number of replicates. 
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Graphical representation
Multi-digraph
• Vertices: mRNA samples;
• Edges: hybridization;
• Direction: dye assignment. 

Cy3 sample

Cy5 sample

D

F

BA

C

E

A design for 6 types of mRNA samples

Graphical representation
• The structure of the graph determines which 

effects can be estimated and the precision of the 
estimates. 
– Two mRNA samples can be compared only if there is 

a path joining the corresponding two vertices. 
– The precision of the estimated contrast then depends 

on the number of paths joining the two vertices and is 
inversely related to the length of the paths.

• Direct comparisons within slides yield more 
precise estimates than indirect ones between 
slides.

Comparing K treatments

(i) Common reference design (ii) All-pairs design

Question: Which design gives the most precise 
estimates of the contrasts A1-A2, A1-A3, and A2-A3?

O

A1 A2 A3 A1 A2

A3

Comparing K treatments
• Answer: The all-pairs design is better, because 

comparisons are done within slides.
For the same precision, the common reference design 
requires three times as many hybridizations or slides as 
the all-pairs design.

• In general, for K treatments
Relative efficiency

=  2K/(K-1)  = 4,  3,  8/3, … � 2.
For the same precision, the common reference design 
requires 2K/(K-1) times as many hybridizations as the 
all-pairs design.
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2 x 2 factorial experiment
two factors, two levels each

1
8/3
1

4/3
(4)

14/322Contrast A-B
3
1
1

(1)
112Main effect A
112Main effect B
24/33Interaction AB

(5)(3) (2)

(1) Common ref.

Scaled variances of estimated effects

(2) Common ref. (4) Connected (5) All-pairs(3) Connected
Pooled reference

T2 T4 T5 T6 T7T3T1

Ref Compare to T1

t vs. t+3
t vs. t+2
t vs. t+1

Time course

Possible designs
1) All samples vs. common pooled reference
2) All samples vs. time 1 
3) Direct hybridizations between timepoints

From Yee Hwa Yang (2002)

N=4

N=3

Design choices in time course experiments

1.67322111B) Direct hybridization

1.5121221A) T1 as common reference

t vs. t+2t vs. t+1

.75

1

1.67

2

T2T4

.75

.75

1

2

T1T4

1

.75

1.67

2

T3T4

.75

.75

.67

2

T2T3

1

.75

.67

2

T1T2

.83.75F) Direct hybridization choice 2

.831E) Direct hybridization choice 1

1.06.67D) T1 as common ref + more

22C) Common reference

AveT1T3

T2 T3 T4T1

T2 T3 T4T1
Ref

T2 T3 T4T1

T2 T3 T4T1

T2 T3 T4T1

T2 T3 T4T1

Experimental design
• In addition to experimental constraints, design 

decisions should be guided by the knowledge of 
which effects are of greater interest to the 
investigator.
E.g. which main effects, which interactions. 

• The experimenter should thus decide on the 
comparisons for which he wants the most 
precision and these should be made within 
slides to the extent possible.
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Experimental design

• N.B. Efficiency can be measured in terms 
of different quantities
– number of slides or hybridizations;
– units of biological material, e.g. amount of 

mRNA for one channel.

Issues in experimental design
• Replication.
• Type of replication: 

– within or between slides replicates; 
– biological or technical replicates 

i.e., different vs. same extraction: 
generalizability vs. reproducibility.

• Sample size and power calculations.
• Dye assignments.
• Combining data across slides and sets of 

experiments: 
regression analysis … next.

2 x 2 factorial experiment

O A

B AB

Study the joint effect of two treatments (e.g. drugs), 
A and B, say, on the gene expression response of 
tumor cells. 

There are four possible treatment combinations 

AB: both treatments are administered;
A  : only treatment A is administered;
B  : only treatment B is administered;
O  : cells are untreated.

two factors, two levels each

n=12

2 x 2 factorial experiment

For each gene, 
consider a linear 
model for the joint 
effect of treatments A 
and B on the 
expression response.

µµ
βµµ
αµµ

γβαµµ

 = 
 +  = 
 + =

+++=

O

B

A

AB

µ: baseline effect;
α: treatment A main effect; 
β: treatment B main effect;
γ: interaction between treatments A and B.
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2 x 2 factorial experiment
Log-ratio M  for hybridization

estimates

γβµµ +=− AAB

O A

B AB

A AB

Log-ratio M  for hybridization

estimates

αβµµ −=− AB

A B

+ 10 others.

Regression analysis
• For parameters θ = (α, β, γ), define a 

design matrix X so that E(M)=Xθ.
• For each gene, compute least squares estimates

of θ.
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Regression analysis
• Combine data across slides for complex designs

- can “link” different sets of hybridizations.
• Obtain unbiased and efficient estimates of the 

effects of interest (BLUE).
• Obtain measures of precision for estimated effects.
• Perform hypothesis testing.
• Extensions of linear models

– generalized linear models; 
– robust weighted regression, etc.

• Use estimated effects in clustering and 
classification 

genes x arrays matrix 

genes x estimated effects matrix

Regression analysis
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Multiple testing

p-value = 0.0001 ☺☺☺☺
or

p-value = 5000 x 0.0001 ����

Differential gene expression
• Identify genes whose expression levels are 

associated with a response or covariate of 
interest
– clinical outcome such as survival, response to 

treatment, tumor class;
– covariate such as treatment, dose, time.

• Estimation: estimate effects of interest (e.g. 
difference in means, slope, interaction) and 
variability of these estimates.

• Testing: assess the statistical significance of the 
observed associations.

Hypothesis testing
• Test for each gene the null hypothesis of no 

differential expression, e.g. using t- or F-statistic.
Two types of errors can be committed

• Type I error or false positive
– say that a gene is differentially expressed when it is 

not, i.e.
– reject a true null hypothesis.

• Type II error or false negative
– fail to identify a truly differentially expressed gene, i.e.
– fail to reject a false null hypothesis.

Multiple hypothesis testing
• Large multiplicity problem: thousands of 

hypotheses are tested simultaneously!
– Increased chance of false positives. 
– E.g. chance of at least one p-value < α for G 

independent tests is   
and converges to one as G increases. 
For G=1,000 and α = 0.01, this chance is 0.9999568!

– Individual p-values of 0.01 no longer correspond to 
significant findings.

• Need to adjust for multiple testing when 
assessing the statistical significance of the 
observed associations.

G)−− α1(1
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Multiple hypothesis testing 
• Define an appropriate Type I error or false 

positive rate.
• Develop multiple testing procedures that 

– provide strong control of this error rate,
– are powerful (few false negatives),
– take into account the joint distribution of the test 

statistics.
• Report adjusted p-values for each gene which 

reflect the overall Type I error rate for the 
experiment.

• Resampling methods are useful tools to deal 
with the unknown joint distribution of the test 
statistics.

Multiple hypothesis testing

GRG-R

G1S
T

Type II error
False null 
hypotheses

G0
V

Type I errorU
True null 
hypotheses

Rejected 
hypotheses

Non-rejected 
hypotheses

From Benjamini & Hochberg (1995)

Type I error rates
• Per-family error rate (PFER). Expected number 

of false positives, i.e.,
PFER = E(V).

• Per-comparison error rate (PCER). Expected 
value of (# false positives / # of hypotheses), i.e.,

PCER = E(V)/G.
• Family-wise error rate (FWER). Probability of at 

least one false positive, i.e., 
FWER = p(V > 0).

Type I error rates

• False discovery rate (FDR). The FDR of 
Benjamini & Hochberg (1995) is the 
expected proportion of false positives 
among the rejected hypotheses, i.e.,

FDR = E(Q),
where by definition

Q = V/R, if R > 0, 
0,     if R = 0.
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Strong control
• N.B. Expectations and probabilities above are 

conditional on which hypotheses are true.
• Strong control. Control of the Type I error rate 

under any combination of true and false 
hypotheses.

• Weak control. Control of the Type I error rate 
under only the complete null hypothesis, i.e., 
when all null hypotheses are true.

• Strong control is essential in microarray
experiments.

Comparison of error rates
• In general, for a given multiple testing 

procedure, 

and 

with FDR = FWER under the complete null.

• Thus, for a fixed criterion α for controlling the Type I 
error rates, the order reverses for the number of rejected 
hypotheses R: procedures controlling the FWER are 
generally more conservative than those controlling either 
the FDR or PCER. 

PFER  FWER  PCER ≤≤
 FWER  FDR ≤

Adjusted p-values
• Given any test procedure, the adjusted p-value

for a single gene g can be defined as the level of 
the entire test procedure at which gene g would 
just be declared differentially expressed.

• Adjusted p-values reflect for each gene the 
overall experiment Type I error rate when genes 
with a smaller p-value are declared differentially 
expressed. 

• Can be estimated by resampling,
e.g. permutation or bootstrap.

Multiple testing procedures
• Strong control of FWER

– Bonferroni: single-step;
– Holm (1979): step-down;
– Hochberg (1986)*: step-up;
– Westfall & Young (1993): step-down maxT and minP, 

exploit joint distribution of test statistics.

• Strong control of FDR
– Benjamini & Hochberg (1995)*: step-up;
– Benjamini & Yekutieli (2001): step-up.

*some distributional assumptions required.
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Multiple testing procedures
• Golub et al. (1999): neighborhood analysis

– weak control only, problematic definition of error 
rate.

• Tusher et al. (2001): SAM
– t- or F-like statistics;
– similar to univariate test with asymmetric cut-offs;
– permutation procedure controlling PCER;
– the SAM estimate of the FDR is E0(V)/R -- can be 

greater than one.

Multiple testing procedures
Sorted adjusted p-values for different multiple testing procedures
Golub et al. (1999) ALL AML data

- FWER control
solid lines

- FDR control
dashed lines

- PCER control
dotted lines

A FAQ 
• Q: What about pre-screening to reduce the 

number of tests with the aim of increasing 
power?

• A: Type I error is controlled in situations where
– we only focus on a subset of genes that are of interest 

– selected before looking at the data;
– the statistic used for screening is independent of the 

test statistic under the null.
• Other situations still need to be better 

understood.

Discussion
• Microarray experiments have revived interest in 

multiple testing
– lots of papers;
– old methods with new names;
– new methods with inadequate or unknown control 

properties;
– a lot of confusion!

• New proposals should be formulated precisely, 
within the standard statistical framework, to 
allow a clear assessment of the properties of 
different procedures.
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R multiple testing software
• Bioconductor R multtest package.
• Multiple testing procedures for controlling

– FWER: Bonferroni, Holm (1979), Hochberg (1986), Westfall & 
Young (1993) maxT and minP.

– FDR: Benjamini & Hochberg (1995), Benjamini & Yekutieli
(2001).

• Tests based on t- or F-statistics for one- and 
two-factor designs.

• Permutation procedures for estimating adjusted 
p-values. 

• Fast permutation algorithm for minP adjusted p-
values.

• Documentation: tutorial on multiple testing.

More detailed slides and references in

Multiple testing in DNA microarray
experiments

available at www.bioconductor.org

A 2x2 factorial microarray
experiment

Robert Gentleman, Denise Scholtens
Arden Miller, Sandrine Dudoit

© Copyright 2002

Complexity of genomic data
• The functioning of cells is a complex and highly 

structured process.
• In the next slide we show a stylized biochemical 

pathway (adapted from Wagner, 2001).
• There are transcription factors, protein kinase

and protein phosphatase reactions.
• Tools are being developed that allow us to 

explore this functioning in a multitude of different 
ways.
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Gene 1 Gene 5Gene 4Gene 3Gene 2

P
active

P

active

DNA

protein

inactive inactivetranscription 
factor

protein 
kinase

protein 
phosphatase transcription 

factor

An example of the interactions between 
some genes (adapted from Wagner 2001)

Overview
• Wagner (2001) suggests that the holy grail 

of functional genomics is the 
reconstruction of genetic networks.

• In this tutorial we examine some methods 
for doing this in factorial genome wide 
RNA expression experiments.

• Such experiments are easy to carry out 
and are becoming widespread. Tools for 
analyzing them are badly needed.

Gene effects

• A factor can either inhibit or enhance the 
production of mRNA for any gene.

• The inhibition or enhancement of mRNA 
production for any given gene can affect 
transcription for other genes either through 
inhibition or enhancement.

Targets
• We define a target of a factor to be a gene 

whose expression of mRNA is altered by 
the presence of the factor.

• A primary target is a target that is directly 
affected by the factor.

• A secondary target is a target whose 
transcription is altered only via the effects 
of some other genes, i.e., can be traced 
back to one or more primary targets.
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Factorial experiments
• We assume that there are two factors of interest, 

F1 and F2.
• A 2x2 microarray experiment can be used to 

measure the expression response (mRNA level) 
of each gene under the four conditions
– nothing
– F1 alone
– F2 alone
– F1 and F2.

Factorial experiments

• Experimental units depend on the 
population of interest (i.e., for which the 
inference is desired).  They may be cells 
from the same cell line, patients, or 
different inbred model organisms.

• Questions of interest often involve 
identifying which genes are directly 
affected by the two factors F1 and F2.

Factorial experiments
• We do not just observe changes in the genes 

that have been directly affected by the factors 
(primary targets).

• We also observe changes in any other genes 
whose expression levels are affected by 
changes in the primary targets (secondary 
targets). 

• The addition of a judiciously chosen second 
factor (say one such as cyclohexamide, CX, that 
inhibits translation) will often allow us to isolate 
the primary targets from the secondary targets.

CX experiment
• There are two factors

– Estrogen, E:  known to affect transcription of 
various genes (some known, some unknown).

– Cyclohexamide, CX: known to stop all 
translation (with very few exceptions).

• The design is a classical 2x2 factorial 
design, with two replicates. 

• We are interested in the main effects and 
interactions for E and CX.
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CX experiment
• We identify as targets all genes whose 

expression of mRNA is affected by the 
application of E.

• A target can be either primary or 
secondary
– primary if E directly affects expression of 

mRNA.
– secondary if mRNA production is affected by 

some other gene and can be traced back to a 
primary target.

Scenario 1
• Assume that there are two related genes, 

B and D, where 
– B is a primary target of E,
– D is a secondary target only via B.

• Neither is expressed initially.
• E causes B to be expressed and this in 

turn causes D to be expressed.
• The addition of CX by itself may not affect 

expression of either B or D.

B D

No factors applied

Gene B is not active Gene D is not active

B DE

BMRNAB

Transcription Translation

B is a Primary 
Target of E

D is a Secondary 
Target of E

MRNAD

Production of mRNAB
is enhanced by E

Production of mRNAD
is enhanced by B

B

E only
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Scenario 1
• In the presence of both CX and E we see 

increased expression of mRNAB but not of 
mRNAD.

• CX stops translation of B and hence 
transcription of D.

• This will be one of the principles we can 
use to differentiate between primary 
targets of E (such as B) and secondary 
targets of E (such as D).

B DE

MRNAB

Transcription

E and CX both present

B is a Primary 
Target

Production of mRNAB
is enhanced by E

Production of mRNAD
is decreased (prevented)

CX

No Translation

No mRNAD

Interpretation: Scenario 1

mRNADmRNAB

LowHighE and CX

Low (?)Low(?)CX

HighHighE

LowLowNothing

Scenario 1
• Note that while we show a direct 

relationship between the expression of B 
and of D we cannot detect such a 
relationship from these data (the purpose 
of this scenario is purely pedagogical).

• Other scenarios include 
– Suppression of D by B, enhancement of B by 

E.
– Enhancement of D by B, and suppression of B 

by E.
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CX experiment
• Assume the following linear model for the 

observed expression response (possibly 
on transformed data) of any given gene

• i indexes chips and g indexes genes.
• x1 indicates the presence of E and x2 

indicates the presence of CX.

igiigCXEiCXgiEggig xxxxy εβββµ ++++= 21,:21

Inference

• The 2x2 CX microarray experiment 
measures the expression response of 
each gene under each of the four factor 
combinations.

• But there is a difference, B is a primary 
target of E, while D is a secondary target 
of E.

Inference
• If gene X is any target for E, the level of mRNAX

might not change when E is added.
• mRNAX might already be being made as fast as 

possible, so addition of E has no effect.
• Production of mRNAX might already be 

suppressed by some other compound.
• A true baseline would help in resolving these 

situations.

Inference

• The introduction of CX provides a form of 
baseline.

• Since (among other things) CX halts 
translation we should be able to use the 
presence or absence of CX to find out 
about primary versus secondary targets.
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Inference

• For any gene we can interpret the 
coefficients in the linear model as follows.

• The parameter βE can be interpreted as 
the main effect of E.

• Genes for which βE is different from zero 
are potential targets. 

• As noted previously, not all targets will 
have βE different from zero.

Inference

• The parameter βCX can be interpreted as 
the main effect of CX. 

• If βCX is different from zero, this suggests  
that production of mRNA is translationally
regulated.

• The interpretation of the interaction βE:CX is 
more difficult.

Primary targets
• Consider the case where we have only CX 

and CX+E.
• Since CX halts all translation, then any 

differences between the condition where 
CX alone is present and CX+E is present 
should indicate primary targets of E.

• This is equivalent to testing the hypothesis
H0: µ+βE+βCX+βE:CX = µ+βCX , i.e., 
H0: βE+βE:CX = 0

Primary targets
• Genes for which the hypothesis

H0: µ+βE+βCX+βE:CX = µ+βCX

is rejected are candidates for primary targets.
• Those with βΕ different from zero, but for which 

we do not reject H0,are secondary targets.
• It seems likely that some inference may be 

drawn from the relationship between βE and 
βE:CX, their signs and their significance levels.
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Scenario 1

- βE= 0βE:CX

= 0= 0βCx

> 0> 0βE

SecondaryPrimary

Limitations
• While we may identify genes that are potentially 

primary targets and those that are potentially 
secondary targets we cannot identify gene—
gene interactions, or feedback loops.

• We can observe the effects but not attribute 
them.

• The use of relevant metadata, biological and 
publication, seems pertinent and could help 
resolve some of the interactions.

Factorial experiments
• These experiments can be contrasted with those 

proposed by Wagner (2001).
• He proposes perturbing each gene in the 

genome of interest and observing the gene 
specific effects.

• We consider very few experiments and observe 
genome wide changes and hence less specific 
information.

• The two methods can be complementary since 
the results of the genome wide study could be 
used to design several single gene experiments.

Methylation experiments 
• Methylation inhibits transcription of specific 

genes.
• If a factor that demethylates the genome were 

available, then one could, in principle, determine 
which genes were methylated (or affected by 
methylated genes). 

• However, we could not determine which genes 
were primary and which were secondary targets.
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Phosphorylation experiments

• Many cellular reactions are carried out 
using energy that is provided by the ADP-
ATP phosphorylation mechanism.

• If a simple mechanism was available for 
halting this process then that could be 
used as a factor in these experiments and 
genes whose transcription is affected by 
phosphorylation could be identified.


