Introduction to genome biology

Sandrine Dudoit and Robert Gentleman

Bioconductor short course
Summer 2002

© Copyright 2002, all rights reserved

Outline

- Cells and cell division
- DNA structure and replication
- Proteins
- Central dogma: transcription, translation
- Pathways

A brief history

1865: Gregor Mendel (1822-1884)
- Gene is a particulate factor
1903: Chromosomes are hereditary units
1910: Gregor Mendel's work published
1913: Chromosomes contain linear arrays of genes
1927: Mutation is a physical change in genes
1931: Recombination is caused by crossing over
1944: DNA is the genetic material
1945: A gene codes for a protein
1950: DNA is a double helix
1956: DNA replicates semiconservatively
1961: Genetic code is triplet
1977: DNA can be sequenced
1990: Genome can be sequenced

From chromosomes to proteins
Cells

- Cells: the fundamental working units of every living organism.
- Protozoa: unicellular organisms. E.g. yeast, bacteria.

Cells

- Each cell contains a complete copy of an organism's genome, or blueprint for all cellular structures and activities.
- Cells are of many different types (e.g. blood, skin, nerve cells), but all can be traced back to a single cell, the fertilized egg.

Cell composition

- 90% water.
- Of the remaining molecules, dry weight
 - 50% protein
 - 15% carbohydrate
 - 15% nucleic acid
 - 10% lipid
 - 10% miscellaneous.
- By element: 60% H, 25% O, 12% C, 5% N.
The genome

- The genome is distributed along chromosomes, which are made of compressed and entwined DNA.
- A (protein-coding) gene is a segment of chromosomal DNA that directs the synthesis of a protein.

Eukaryotes vs. prokaryotes

- **Prokaryotic cells**: lack a distinct, membrane-bound nucleus.
 E.g. bacteria.
- **Eukaryotic cells**: distinct, membrane-bound nucleus.
 Larger and more complex in structure than prokaryotic cells.
 E.g. mammals, yeast.
The eukaryotic cell

- **Nucleus**: membrane enclosed structure which contains chromosomes, i.e., DNA molecules carrying genes essential to cellular function.
- **Cytoplasm**: the material between the nuclear and cell membranes; includes fluid (cytosol), organelles, and various membranes.
- **Ribosome**: small particle composed of RNAs and proteins that functions in protein synthesis.

The eukaryotic cell

- **Organelle**: a membrane enclosed structure found in the cytoplasm.
- **Vesicle**: small cavity or sac, especially one filled with fluid.
- **Mitochondrion**: organelle found in most eukaryotic cells in which respiration and energy generation occurs.
- **Mitochondrial DNA**: codes for ribosomal RNAs and transfer RNAs used in the mitochondrion; contains only 13 recognizable genes that code for polypeptides.

The human genome

- The human genome is distributed along **23 pairs of chromosomes**
 - 22 autosomal pairs;
 - the sex chromosome pair, XX for females and XY for males.
- In each pair, one chromosome is paternally inherited, the other maternally inherited (cf. meiosis).
Chromosomes

Chromosome banding patterns

Of mice and men

Cell divisions

- **Mitosis**: Nuclear division which produces two daughter diploid nuclei identical to the parent nucleus.
 - How each cell can be traced back to a single fertilized egg.
- **Meiosis**: Two successive nuclear divisions which produce four daughter haploid nuclei, different from the original cell.
 - Leads to the formation of gametes (egg/sperm).
Mitosis

Prophase
- Chromatin condenses into chromosomes.
- Nuclear envelope fragments.

Metaphase
- Chromosomes align at the equatorial plane.

Anaphase
- Sister chromatids separate.
- Centromeres divide.

Telophase
- Chromatin de-condenses.
- Cytokinesis divides.

In two daughter cells.

Meiosis

Prophase 1
- Homologous chromosomes pair.

Metaphase 1
- Homologous chromosomes align at the equatorial plane.

Anaphase 1
- Homologous chromosomes separate.

Telophase 1
- Chromosomes de-condense.

Prophase 2
- Chromosomes condense.

Metaphase 2
- Chromosomes align at the equatorial plane.

Anaphase 2
- Sister chromatids separate.

Telophase 2
- Chromatin de-condenses.

In four daughter cells.

Meiosis vs. mitosis

Dividing cell

Image of cell at metaphase from fluorescent-light microscope.

Doe Genomes to Life website
Recombination

Crossing-over and recombination during meiosis

Recombination

Four cells (egg or sperm)
Parental
Recombinant
Recombinant
Parental

Chromosomes and DNA

“We wish to suggest a structure for the salt of deoxyribose nucleic acid (D.N.A.). This structure has novel features which are of considerable biological interest.”

DNA structure

A deoxyribonucleic acid or DNA molecule is a double-stranded polymer composed of four basic molecular units called nucleotides.

Each nucleotide comprises:
- a phosphate group;
- a deoxyribose sugar;
- one of four nitrogen bases:
 - purines: adenine (A) and guanine (G),
 - pyrimidines: cytosine (C) and thymine (T).

Base pairing occurs according to the following rule:
- C pairs with G,
- A pairs with T.

The two chains are held together by hydrogen bonds between nitrogen bases.
DNA structure

Four nucleotide bases:
- purines: A, G
- pyrimidine: T, C

Nucleotide bases

Purines

Adenine (A)

Guanine (G)

Pyrimidines

Thymine (T) (DNA)

Cytosine (C)

Uracil (U) (RNA)

Nucleotide base pairing

G-C pair

3 H bonds

A-T pair

2 H bonds
DNA structure

- Polynucleotide chains are **directional** molecules, with slightly different structures marking the two ends of the chains, the so-called **3’ end** and **5’ end**.
- The 3’ and 5’ notation refers to the numbering of carbon atoms in the sugar ring.
- The 3’ end carries a sugar group and the 5’ end carries a phosphate group.
- The two complementary strands of DNA are **antiparallel** (i.e., 5’ end to 3’ end directions for each strand are opposite).

Genetic and physical maps

- **Physical distance**: number of base pairs (bp).
- **Genetic distance**: expected number of crossovers between two loci, per chromatid, per meiosis.
 - Measured in Morgans (M) or centiMorgans (cM).
 - 1cM ~ 1 million bp (1Mb).

The human genome in numbers

- 23 pairs of chromosomes;
- 2 meters of DNA;
- 3,000,000,000 bp;
- 35 M (males 27M, females 44M);
- 30,000–40,000 genes.

DNA replication

"It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material."

In the replication of a double-stranded or duplex DNA molecule, both parental (i.e. original) DNA strands are copied. The parental DNA strand that is copied to form a new strand is called a template. When copying is finished, the two new duplexes each consist of one of the original strands plus its complementary copy - semiconservative replication.
DNA replication

- Many enzymes are required to unwind the double helix and to synthesize a new strand of DNA.
- The unwound helix, with each strand being synthesized into a new double helix, is called the replication fork.
- DNA synthesis occurs in the 5' → 3' direction.
DNA replication

Figure 13.1: Overview: DNA synthesis occurs by adding nucleotides to the 3'-OH end of the growing chain, so that the new chain is synthesized in the 5'-3' direction. The product for DNA synthesis is a phosphodiester linkage, not a phosphate group (eliminating the terminal two phosphate groups in the reaction).

DNA replication

Figure 13.2: Synthesis of Okazaki fragments requires priming, extension, removal of RNA, proofreading, and nick ligation.

DNA replication

Figure 13.3: The lagging strand is synthesized discontinuously while the leading strand is synthesized continuously.
Enzymes in DNA replication

1. **Topoisomerase**: removes supercoils and initiates duplex unwinding.
2. **Helicase**: unwinds duplex.
3. **DNA polymerase**: synthesizes the new DNA strand; also performs proofreading.
4. **Primase**: attaches small RNA primer to single-stranded DNA to act as a substitute 3’OH for DNA polymerase to begin synthesizing from.
5. **Ligase**: catalyzes the formation of phosphodiester bonds.
6. **Single-stranded binding proteins**: maintain the stability of the replication fork.

DNA polymerase

- There are different types of polymerases, **DNA polymerase III** is used for synthesizing the new strand.
- DNA polymerase is a **holoenzyme**, i.e., an aggregate of several different protein subunits.
- DNA polymerase proceeds along the template and recruits free **dNTPs** (deoxynucleotide triphosphate) to hydrogen bond with their appropriate complementary dNTP on the template.
- The energy stored in the triphosphate is used to form the covalent bonds.
- DNA polymerase uses a short DNA fragment or **primer** with a 3’OH group onto which it can attach a dNTP.

β-subunit of DNA polymerase III holoenzyme forms a ring that completely surrounds a DNA duplex.
Proteins

- **Proteins**: large molecules composed of one or more chains of amino acids, **polypeptides**.
- **Amino acids**: class of 20 different organic compounds containing a basic amino group (-NH₂) and an acidic carboxyl group (-COOH).
- The order of the amino acids is determined by the **base sequence** of nucleotides in the **gene** coding for the protein.
- E.g. hormones, enzymes, antibodies.
Each cell contains a complete copy of the organism's genome. Cells are of many different types and states E.g. blood, nerve, and skin cells, dividing cells, cancerous cells, etc. What makes the cells different?

- **Differential gene expression**, i.e., when, where, and **how much** each gene is expressed.
- On average, 40% of our genes are expressed at any given time.
Central dogma

The expression of the genetic information stored in the DNA molecule occurs in two stages:

– (i) transcription, during which DNA is transcribed into mRNA;
– (ii) translation, during which mRNA is translated to produce a protein.

Other important aspects of regulation: methylation, alternative splicing, etc.

RNA

- A ribonucleic acid or RNA molecule is a nucleic acid similar to DNA, but
 - single-stranded;
 - ribose sugar rather than deoxyribose sugar;
 - uracil (U) replaces thymine (T) as one of the bases.

- RNA plays an important role in protein synthesis and other chemical activities of the cell.

- Several classes of RNA molecules, including messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), and other small RNAs.
The genetic code

- DNA: sequence of four different nucleotides.
- Proteins: sequence of twenty different amino acids.
- The correspondence between DNA's four-letter alphabet and a protein's twenty-letter alphabet is specified by the genetic code, which relates nucleotide triplets or codons to amino acids.

Start codon: initiation of translation (AUG, Met).
Stop codons: termination of translation.

Mapping between codons and amino acids is many-to-one: 64 codons but only 20 a.a..

Third base in codon is often redundant, e.g., stop codons.

Protein synthesis

- Analogous to DNA replication: several steps and many enzymes.
- RNA polymerase synthesizes an RNA strand complementary to one of the two DNA strands.
- The RNA polymerase recruits rNTPs (ribonucleotide triphosphate) in the same way that DNA polymerase recruits dNTPs (deoxynucleotide triphosphate).
- However, synthesis is single stranded and only proceeds in the 5’ to 3’ direction of mRNA (no Okazaki fragments).
Transcription

- The strand being transcribed is called the template or antisense strand; it contains anticodons.
- The other strand is called the sense or coding strand; it contains codons.
- The RNA strand newly synthesized from and complementary to the template contains the same information as the coding strand.

Transcription

- **Promoter.** Unidirectional sequence upstream of the coding region (i.e., at 5’ end on sense strand) that tells the RNA polymerase both where to start and on which strand to continue synthesis. E.g. TATA box.
- **Terminator.** Regulatory DNA region signaling end of transcription, at 3’ end.
- **Transcription factor.** A protein needed to initiate the transcription of a gene, binds either to specific DNA sequences (e.g. promoters) or to other transcription factors.
Exons and introns

- Genes comprise only about 2% of the human genome.
- The rest consists of **non-coding** regions
 - chromosomal structural integrity,
 - cell division (e.g. centromere)
 - regulatory regions: regulating when, where, and in what quantity proteins are made.
- The terms **exon** and **intron** refer to coding (translated into a protein) and non-coding DNA, respectively.

Splicing

Translation

- **Ribosome:**
 - cellular factory responsible for protein synthesis;
 - a large subunit and a small subunit;
 - structural RNA and about 80 different proteins.
- **transfer RNA (tRNA):**
 - adaptor molecule, between mRNA and protein;
 - specific **anticodon** and acceptor site;
 - specific **charger protein**, can only bind to that particular tRNA and attach the correct amino acid to the acceptor site.
Translation

- **Initiation**
 - *Start codon* AUG, which codes for **methionine**, Met.
 - Not every protein necessarily starts with methionine. Often this first amino acid will be removed in post-translational processing of the protein.
- **Termination:**
 - *stop codon* (UAA, UAG, UGA),
 - ribosome breaks into its large and small subunits, releasing the new protein and the mRNA.

tRNA

- The tRNA has an **anticodon** on its mRNA-binding end that is complementary to the codon on the mRNA.
- Each tRNA only binds the appropriate amino acid for its anticodon.

Alternative splicing

- There are more than 1,000,000 different human antibodies. How is this possible with only ~30,000 genes?
- **Alternative splicing** refers to the different ways of combining a gene’s exons. This can produce different forms of a protein for the same gene.
- Alternative pre-mRNA splicing is an important mechanism for regulating gene expression in higher eukaryotes.
- E.g. in humans, it is estimated that approximately 30% of the genes are subject to alternative splicing.
Alternative splicing

- Primary isoform
- Cryptic exon
- Exon extension (5’ or 3’)
- Exon skipping
- Exon truncation

Immunoglobulin

- B cells produce antibody molecules called immunoglobulins (Ig) which fall in five broad classes.
- Diversity of Ig molecules
 - DNA sequence: recombination, mutation.
 - mRNA sequence: alternative splicing.
 - Protein structure: post-translational proteolysis, glycosylation.

Post-translational processing

- Folding.
- Cleavage by a proteolytic (protein-cutting) enzyme.
- Alteration of amino acid residues
 - phosphorylation, e.g. of a tyrosine residue.
 - glycosylation, carbohydrates covalently attached to asparagine residue.
 - methylation, e.g. of arginine.
- Lipid conjugation.

Functional genomics

- The various genome projects have yielded the complete DNA sequences of many organisms.
 - E.g. human, mouse, yeast, fruitfly, etc.
 - Human: 3 billion base-pairs, 30-40 thousand genes.
- Challenge: go from sequence to function, i.e., define the role of each gene and understand how the genome functions as a whole.
Pathways

- The complete genome sequence doesn’t tell us much about how the organism functions as a biological system.
- We need to study how different gene products interact to produce various components.
- Most important activities are not the result of a single molecule but depend on the **coordinated effects** of multiple molecules.

TFG-β pathway

- **Transforming Growth Factor beta, TGF-β**, plays an essential role in the control of development and morphogenesis in multicellular organisms.
- The basic pathway provides a simple route for signals to pass from the extracellular environment to the nucleus, involving only four types of molecules.

TFG-β pathway

Four types of molecules
- TFG-β
- TFG-β type I receptors
- TFG-β type II receptors
- SMADS, a family of signal transducers and transcriptional activators.
TFG-β pathway

• Extracellular TGF–β ligands transmit their signals to the cell's interior by binding to type II receptors, which form heterodimers with type I receptors.

• The receptors in turn activate the SMAD transcription factors.

TFG-β pathway

• Phosphorylated and receptor-activated SMADs (R–SMADs) form heterodimers with common SMADs (co–SMADs) and translocate to the nucleus.

• In the nucleus, SMADs activate or inhibit the transcription of target genes, in collaboration with other factors.

Pathways

• http://www.grt.kyushu-u.ac.jp/spad/
• There are many open questions regarding the relationship between gene expression levels (e.g. mRNA levels) and pathways.
• It is not clear to what extent microarray gene expression data will be informative.

WWW resources

• Genes VII http://www.oup.co.uk/best-textbooks/biochemistry/genesvii/