DNA microarrays rely on the hybridization properties of nucleic acids to monitor DNA or RNA abundance on a genomic scale in different types of cells.

The ancestor of cDNA microarrays: the Northern blot.
Hybridization

- **Hybridization** refers to the annealing of two nucleic acid strands following the base pairing rules.

- Nucleic acid strands in a duplex can be separated, or **denatured**, by heating to destroy the hydrogen bonds.

Gene expression assays

The main types of gene expression assays:
- Serial analysis of gene expression (SAGE);
- **Short oligonucleotide arrays** (Affymetrix);
- Long oligonucleotide arrays (Agilent Inkjet);
- Fibre optic arrays (Illumina);
- **cDNA arrays** (Brown/Botstein).
Applications of microarrays

- Measuring transcript abundance (cDNA arrays);
- Genotyping;
- Estimating DNA copy number (CGH);
- Determining identity by descent (GMS);
- Measuring mRNA decay rates;
- Identifying protein binding sites;
- Determining sub-cellular localization of gene products;
- …

Transcriptome

- mRNA or transcript levels sensitively reflect the state of a cell.
- Measuring protein levels (translation) would be more direct but more difficult.

Transcriptome

- The transcriptome reflects
 - Tissue source: cell type, organ.
 - Tissue activity and state:
 - Stage of development, growth, death.
 - Cell cycle.
 - Disease vs. healthy.
 - Response to therapy, stress.

Applications of microarrays

- Cancer research: Molecular characterization of tumors on a genomic scale
 → more reliable diagnosis and effective treatment of cancer.
- Immunology: Study of host genomic responses to bacterial infections; reversing immunity.
- …
Applications of microarrays

- Compare mRNA (transcript) levels in different types of cells, i.e., vary
 - Tissue: liver vs. brain;
 - Treatment: drugs A, B, and C;
 - State: tumor vs. non-tumor, development;
 - Organism: different yeast strains;
 - Timepoint;
 - etc.

cDNA microarrays

- Prepare cDNA target
- Hybridize target to microarray

The relative abundance of a spotted DNA sequence in two DNA or RNA samples may be assessed by monitoring the differential hybridization of these two samples to the sequence on the array.

- **Probes**: DNA sequences spotted on the array, immobile substrate.
- **Targets**: Nucleic acid samples hybridized to the array, mobile substrate.
cDNA microarrays

The ratio of the red and green fluorescence intensities for each spot is indicative of the relative abundance of the corresponding DNA probe in the two nucleic acid target samples.

\[
M = \log_2 \frac{R}{G} = \log_2 R - \log_2 G
\]

- **\(M < 0\)**, gene is over-expressed in green-labeled sample compared to red-labeled sample.
- **\(M = 0\)**, gene is equally expressed in both samples.
- **\(M > 0\)**, gene is over-expressed in red-labeled sample compared to green-labeled sample.
The process

Building the microarray:
- MASSIVE PCR
- PCR PURIFICATION AND PREPARATION
- PRINTING

RNA preparation:
- CELL CULTURE AND HARVEST
- RNA ISOLATION
- cDNA PRODUCTION

Hybing the array:
- ARRAY HYBRIDIZATION AND SCANNING
- TARGET LABELING
- DATA ANALYSIS

The arrayer
- Ngai Lab arrayer, UC Berkeley
- Print-head

Sample preparation
- 96-well plate
 - Contains cDNA probes
- Glass slide
 - Array of bound cDNA probes
 - 4x4 blocks = 16 print-tip-groups

Print-tips collect cDNA from wells
- Print-tip group 1
- cDNA clones
- Print-tip group 7
Hybridization

Binding of cDNA target samples to cDNA probes on the slide

Hybridize for 5-12 hours

Hybridization chamber

- Humidity
- Temperature
- Formamide (Lowers the Tmp)

Scanning

Detector PMT

Duplicate spots

Cy5: 635nm
Cy3: 532nm

RGB overlay of Cy3 and Cy5 images
Raw data

E.g. Human cDNA arrays
• ~43K spots;
• 16–bit TIFFs: ~ 20Mb per channel;
• ~ 2,000 x 5,500 pixels per image;
• Spot separation: ~ 136um;
• For a “typical” array, the spot area has
 – mean = 43 pixels,
 – med = 32 pixels,
 – SD = 26 pixels.

Oligonucleotide chips

Animation

http://www.bio.davidson.edu/courses/genomics/chip/chip.html

Probe sets

• Each gene is represented by 16-20 oligonucleotides of 25 base-pairs, i.e., 25-mers.
• **Perfect match probe, PM:** A 25-mer complementary to the reference sequence.
• **Mismatch probe, MM:** same as PM but with a single homomeric base change for the middle (13th) base.
• **Probe pair.** A (PM,MM) pair.
• **Probe set.** 16-20 probe pairs.
• The purpose of the MM probe design is to measure non-specific binding and background noise.
Oligonucleotide chips

- The probes are synthesized in situ, using combinatorial chemistry and photolithography.
- **Probe cells** are square-shaped features on the chip containing millions of copies of a single 25-mer probe. Sides are 18 μm microns.

The manufacturing of GeneChip® probe arrays is a combination of photolithography and combinational chemistry.
Image analysis

• About 100 pixels per probe cell.
• These intensities are combined to form one number representing the expression level for the probe cell oligo.
• → CEL file with PM or MM intensity for each cell.

Expression measures

• Most expression measures are based on differences of PM-MM.
• The intention if to correct for background and non-specific binding.
• E.g. MarrayArray Suite® (MAS) v. 4.0 uses Average Difference Intensity (ADI) or AvDiff = average of PM-MM.
• Problem: MM may also measure signal.
• More on this in lecture Pre-processing in DNA microarray experiments.

What is the evidence?

Statistics and Microarrays

Biological question
→ Experimental design
→ Microarray experiment
→ Image analysis
→ Normalization
→ Estimation
→ Testing
→ Clustering
→ Discrimination
→ Biological verification and interpretation
Statistical computing

Everywhere …

• for statistical design and analysis:
 – pre-processing, estimation, testing, clustering, prediction, etc.
• for integration with biological information resources (in house and external databases)
 – gene annotation (GenBank, LocusLink);
 – literature (PubMed);
 – graphical (pathways, chromosome maps).

WWW resources

• Complete guide to “microarraying”
 http://cmgm.stanford.edu/pbrown/mguide/
 http://www.microarrays.org
 – Parts and assembly instructions for printer and scanner;
 – Protocols for sample prep;
 – Software;
 – Forum, etc.
• cDNA microarray animation
 http://www.bio.davidson.edu/courses/genomics/chip/chip.html
• Affymetrix
 http://www.affymetrix.com

Integration of biological metadata

• Expression, sequence, structure, annotation, literature.
• Integration will depend on our using a common language and will rely on database methodology as well as statistical analyses.
• This area is largely unexplored.

Next …

Pre-processing in DNA microarray experiments

• cDNA microarrays
 – Image analysis;
 – Normalization.
• Affymetrix oligonucleotide chips
 – Image analysis;
 – Normalization;
 – Expression measures.