The Bioconductor Project: Open-source Statistical Software for the Analysis of Microarray Data

Sandrine Dudoit
Division of Biostatistics
University of California, Berkeley
www.stat.berkeley.edu/~sandrine

EMBO Practical Course on Analysis and Informatics of Microarray Data
Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
March 18, 2003

© Copyright 2003, all rights reserved
Materials from Bioconductor short courses developed with
Robert Gentleman,
Rafael Irizarry.

Expanded version of this course: Fred Hutchinson Cancer Research Center, December 2002
Biological question

Experimental design

Microarray experiment

Image analysis

Expression quantification

Normalization

Pre-processing

Estimation

Testing

Clustering

Prediction

Biological verification and interpretation
Everywhere …

• Statistical design and analysis:
 – image analysis, normalization, estimation, testing, clustering, prediction, etc.

• Integration of experimental data with biological metadata from WWW-resources
 – gene annotation (GenBank, LocusLink);
 – literature (PubMed);
 – graphical (pathways, chromosome maps).
Outline

• Overview of the Bioconductor project
• Annotation
• Visualization
• Pre-processing: spotted and Affy arrays
• Differential gene expression
• Clustering and classification
Acknowledgments

• Bioconductor core team

• **Vince Carey**, Biostatistics, Harvard
• **Yongchao Ge**, Statistics, UC Berkeley
• **Robert Gentleman**, Biostatistics, Harvard
• **Jeff Gentry**, Dana-Farber Cancer Institute
• **Rafael Irizarry**, Biostatistics, Johns Hopkins
• **Yee Hwa (Jean) Yang**, Biostatistics, UCSF
• **Jianhua (John) Zhang**, Dana-Farber Cancer Institute
References

• **Personal webpage**
 www.stat.berkeley.edu/~sandrine
 articles and talks on: image analysis; normalization; identification of differentially expressed genes; cluster analysis; classification.

• **Bioconductor**
 www.bioconductor.org
 – software, data, and documentation (vignettes);
 – training materials from short courses;
 – mailing list.

• **R**
 www.r-project.org
 – software; documentation; RNews.
Bioconductor

- Bioconductor is an open source and open development software project for the analysis and comprehension of biomedical and genomic data.

- Software, data, and documentation are available from www.bioconductor.org.
Bioconductor

- The project was started in the Fall of 2001 by Robert Gentleman, at the Biostatistics Unit of the Dana Farber Cancer Institute.
- There are currently 21 core developers, at various institutions in the US and Europe.
- R and the R package system are used to design and distribute software (www.r-project.org).
- First release (v 1.0): May 2nd, 2002, 15 packages.
- Second release (v 1.1): November 18th, 2002, 5 new packages.
Bioconductor

There are two main classes of packages

- **End-user packages:**
 - aimed at users unfamiliar with R or computer programming;
 - polished and easy to use interfaces to a wide variety of computational and statistical methods for the analysis of genomic data.

- **Developer packages:** aimed at software developers, in the sense that they provide "software to write software".
Bioconductor packages
Release 1.1, November 18th, 2002

- General infrastructure:
 \texttt{Biobase}, \texttt{reposTools}, \texttt{rhdf5}, \texttt{tkWidgets}.
- Annotation:
 \texttt{annotate}, \texttt{AnnBuilder} → data packages.
- Graphics:
 \texttt{geneplotter}, \texttt{hexbin}.
- Pre-processing for Affymetrix oligonucleotide chip data:
 \texttt{affy}, \texttt{vsn}, CDF packages.
- Pre-processing for spotted DNA microarray data:
 \texttt{marrayClasses}, \texttt{marrayInput}, \texttt{marrayNorm}, \texttt{marrayPlots},
 \texttt{marrayTools}, \texttt{vsn}.
- Differential gene expression:
 \texttt{edd}, \texttt{genefilter}, \texttt{multtest}, \texttt{ROC}.
- Graphs:
 \texttt{graph}.
Ongoing efforts

- Variable (feature) selection;
- Prediction;
- Cluster analysis;
- Cross-validation;
- Multiple testing;
- Quality measures for microarray data;
- Interactions with MAGE-ML;
- Biological sequence analysis;
- Etc.
Computing needs

• Mechanisms for facilitating the design and deployment of portable, extensible, and scalable software.
• Support for interoperability with software written in other languages.
• Tools for integrating biological metadata from the WWW in the analysis of experimental metadata.
• Access to a broad range of statistical and numerical methods.
• High-quality visualization and graphics tools that support interactivity.
• An effective, extensible user interface.
• Tools for producing innovative, high-quality documentation and training materials.
• Methodology that supports the creation, testing, and distribution of software and data modules.
Bioconductor

• Interactive tools for linking experimental data in real time, to biological metadata from WWW resources. E.g. PubMed, GenBank, LocusLink.

• Scenario. Normalize spotted array data with marrayNorm, obtain list of differentially expressed genes from multtest or genefilter, use the annotate package
 – to retrieve and search PubMed abstracts for these genes;
 – to generate an HTML report with links to LocusLink for each gene.
Bioconductor

- **Widgets.** Small-scale graphical user interfaces (GUI), providing point & click access for specific tasks (*tkWidgets*).
- E.g. File browsing and selection for data input, basic analyses.

- **Object-oriented class/method design.** Allows efficient representation and manipulation of large and complex biological datasets of multiple types (cf. MIAME standards).
Object-oriented programming

• The Bioconductor project has adopted the object-oriented programming – OOP – paradigm presented in J. M. Chambers (1998). *Programming with Data*.

• Tools for programming using the class/method mechanism are provided in the R *methods* package.

• Tutorial: www.omegahat.org/RSMethods/index.html
OOP

- A **class** provides a software abstraction of a real world object. It reflects how we think of certain objects and what information these objects should contain.
- Classes are defined in terms of **slots** which contain the relevant data.
- An object is an **instance** of a class.
- A class defines the structure, inheritance, and initialization of objects.
A method is a function that performs an action on data (objects).

Methods define how a particular function should behave depending on the class of its arguments.

Methods allow computations to be adapted to particular data types, i.e., classes.

A generic function is a dispatcher, it examines its arguments and determines the appropriate method to invoke.

Examples of generic functions include `plot`, `summary`, `print`.
Data

• Issues:
 – complexity;
 – size;
 – evolution.

• We distinguish between biological metadata and experimental metadata.
Experimental metadata

- Gene expression measures
 - scanned images, i.e., raw data;
 - image quantitation data, i.e., output from image analysis;
 - normalized expression measures, i.e., log ratios M or Affy measures.
- Reliability information for the expression measures.
- Information on the probe sequences printed on the arrays (array layout).
- Information on the target samples hybridized to the arrays.
- See Minimum Information About a Microarray Experiment – MIAME – standards.
Biological metadata

- Biological attributes that can be applied to the experimental data.
- E.g. for genes
 - chromosomal location;
 - gene annotation (LocusLink, GO);
 - relevant literature (PubMed).
- Biological metadata sources are large, complex, evolving rapidly, and typically distributed via the WWW.
marrayRaw class

Pre-normalization intensity data for a batch of arrays

- **maRf**: Matrix of red and green foreground intensities
- **maGf**: Matrix of red and green background intensities
- **maRb**: Matrix of red and green background intensities
- **maGb**: Matrix of red and green background intensities
- **maW**: Matrix of spot quality weights
- **maLayout**: Array layout parameters - `marrayLayout`
- **maGnames**: Description of spotted probe sequences - `marrayInfo`
- **maTargets**: Description of target samples - `marrayInfo`
- **maNotes**: Any notes
AffyBatch class

Probe-level intensity data for a batch of arrays (same CDF)

- **cdfName**: Name of CDF file for arrays in the batch
- **nrow, ncol**: Dimensions of the array
- **exprs, se.exprs**: Matrices of probe-level intensities and SEs. Rows → probe cells, columns → arrays.
- **phenoData**: Sample level covariates, instance of class `phenoData`
- **annotation**: Name of annotation data
- **description**: MIAME information
- **notes**: Any notes
exprSet class

- **exprs**: Matrix of expression measures, genes x samples
- **se.exprs**: Matrix of SEs for expression measures, genes x samples
- **phenoData**: Sample level covariates, instance of class `phenoData`
- **annotation**: Name of annotation data
- **description**: MIAME information
- **notes**: Any notes
Reading in `phenoData`

- tkSampleNames
- tkphenoData
- tkMIAME
Pedagogy

Extensive documentation and training resources for R and Bioconductor are available on the WWW.

- **R manuals and tutorials** are available from the R website.
- **R help system**
 - detailed on-line documentation, available in text, HTML, PDF, and LaTeX formats;
 - e.g. `help(genefilter)`, `?pubmed`.
- **R demo system**
 - user-friendly interface for running demonstrations of R scripts;
 - e.g. `demo(marrayPlots)`, `demo(affy)`.
- **Bioconductor short courses**
 - modular training segments on software and statistical methodology;
 - lectures and computer labs available on WWW for self-instruction.
Vignettes

• Bioconductor has adopted a new documentation paradigm, the vignette.
• A vignette is an executable document consisting of a collection of documentation text and code chunks.
• Vignettes form dynamic, integrated, and reproducible statistical documents that can be automatically updated if either data or analyses are changed.
• Vignettes can be generated using the Sweave function from the R tools package.
Vignettes

• Each Bioconductor package contains at least one vignette, located in the `doc` subdirectory of an installed package and accessible from the help browser.

• Vignettes provide task-oriented descriptions of the package's functionality and can be used interactively.

• Vignettes are available separately from the Bioconductor website or as part of the packages.
Vignettes

- Tools are being developed for managing and using this repository of step-by-step tutorials
 - **Biobase**: openVignette – Menu of available vignettes and interface for viewing vignettes (PDF).
 - **tkWidgets**: vExplorer – Interactive use of vignettes.
 - **reposTools**.
Sweave

• The Sweave system allows the generation of integrated statistical documents intermixing text, code, and code output (textual and graphical).

• Functions are available in the R tools package.

• See ?Sweave and manual
 www.ci.tuwien.ac.at/~leisch/Sweave/
Sweave input

- **Input:** a text file which consists of a sequence of code and documentation chunks, or segments (noweb file).
 - Documentation chunks
 - start with `@`
 - can be text in a markup language like LaTeX.
 - Code chunks
 - start with `<<name>>=`
 - can be R or S-Plus code.
Sweave output

• **Output**: a single document, e.g., `.tex` file or `.pdf` file containing
 – the documentation text,
 – the R code,
 – the code output: text and graphs.

• The document can be automatically regenerated whenever the data, code, or documentation text change.

• **Stangle** or **tangleToR**: extract only the code.
Annotation
annotate package

• One of the largest challenges in analyzing genomic data is associating the experimental data with the available biological metadata, e.g., sequence, gene annotation, chromosomal maps, literature.

• Bioconductor provides two main packages for this purpose:
 – annotate (end-user);
 – AnnBuilder (developer).
WWW resources

• Nucleotide databases: e.g. GenBank.
• Gene databases: e.g. LocusLink, UniGene.
• Protein sequence and structure databases: e.g. SwissProt, Protein DataBank (PDB).
• Literature databases: e.g. PubMed, OMIM.
• Chromosome maps: e.g. NCBI Map Viewer.
• Pathways: e.g. KEGG.
• Entrez is a search and retrieval system that integrates information from databases at NCBI (National Center for Biotechnology Information).
annotate: matching IDs

Important tasks
• Associate manufacturers or in-house probe identifiers to other available identifiers.
 E.g.
 Affymetrix IDs → LocusLink LocusID
 Affymetrix IDs → GenBank accession number.
• Associate probes with biological data such as chromosomal position, pathways.
• Associate probes with published literature data via PubMed (need PMID).
<table>
<thead>
<tr>
<th>Annotation Details</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affymetrix identifier</td>
<td>"41046_s_at"</td>
</tr>
<tr>
<td>HGU95A chips</td>
<td></td>
</tr>
<tr>
<td>LocusLink, LocusID</td>
<td>"9203"</td>
</tr>
<tr>
<td>GenBank accession #</td>
<td>"X95808"</td>
</tr>
<tr>
<td>Gene symbol</td>
<td>"ZNF261"</td>
</tr>
<tr>
<td>PubMed, PMID</td>
<td>"10486218", "9205841", "8817323"</td>
</tr>
<tr>
<td>Chromosomal location</td>
<td>"X", "Xq13.1"</td>
</tr>
</tbody>
</table>
Annotation data packages

- The Bioconductor project provides packages that contain only data.
- These data packages are built using AnnBuilder.
- They can be downloaded from the Bioconductor website and also using `update.packages`.
- Data packages contain many different mappings to interesting data.
 - Mappings between Affy IDs and other probe IDs: `hgu95a` for HGU95A GeneChip series, also, `hgu133a`, `hu6800`, `mgu74a`, `rgu34a`.
 - Affy CDF data packages.
- The packages are updated and expanded regularly as updated and new data become available.
annotate: matching IDs

• Much of what annotate does relies on matching symbols.
• This is basically the role of a hash table in most programming languages.
• In R, we rely on environments.
• The annotation data packages provide R environment objects containing key and value pairs for the mappings between two sets of probe identifiers.
• Keys can be accessed using the R ls function.
• Matching values in different environments can be accessed using the get or multiget functions.
annotate: matching IDs

```r
> library(hgu95a)
> get("41046_s_at", env = hgu95aACCNUM)
[1] "X95808"
> get("41046_s_at", env = hgu95aLOCUSID)
[1] "9203"
> get("41046_s_at", env = hgu95aSYMBOL)
[1] "ZNF261"
> get("41046_s_at", env = hgu95aGENENAME)
[1] "zinc finger protein 261"
> get("41046_s_at", env = hgu95aSUMFUNC)
[1] "Contains a putative zinc-binding motif (MYM)|Proteome"
> get("41046_s_at", env = hgu95aUNIGENE)
[1] "Hs.9568"
```
annotate: matching IDs

> get("41046_s_at", env = hgu95aCHR)
[1] "X"
> get("41046_s_at", env = hgu95aCHRLOC)
[1] "66457019@X"
> get("41046_s_at", env = hgu95aCHRORI)
[1] "-@X"
> get("41046_s_at", env = hgu95aMAP)
[1] "Xq13.1"
> get("41046_s_at", env = hgu95aPMID)
[1] "10486218" "9205841" "8817323"
> get("41046_s_at", env = hgu95aGO)
[1] "GO:0003677" "GO:0007275"
annotate: matching IDs

• Instead of relying on the general R functions for environments, new user-friendly functions have been written for accessing and working with specific identifiers.

• E.g. getGO, getGOdesc, getLL, getPMID, getSYMBOL.
annotate: matching IDs

```r
> getSymbol("41046_s_at", data="hgu95a")
  41046_s_at
  "ZNF261"
> gg <- getGO("41046_s_at", data="hgu95a")
> getGOdesc(gg, "MF")
  "c("GO:0003677", "GO:0007275")"
  [1] "DNA binding"
> getLL("41046_s_at", data="hgu95a")
  41046_s_at
  9203
> getPMID("41046_s_at", data="hgu95a")
  "41046_s_at"
  [1] 10486218 9205841 8817323
```
annotate: querying databases

The annotate package provides tools for

• Searching and processing information from various WWW biological databases
 – GenBank,
 – LocusLink,
 – PubMed.

• Regular expression searching of PubMed abstracts.

• Generating nice HTML reports of analyses, with links to biological databases.
annotate: WWW queries

- Functions for querying WWW databases from R rely on the `browseURL` function

 `browseURL("www.r-project.org")`

- The `xml` package is used to parse query results.
annotate: querying GenBank

- Given a vector of GenBank accession numbers or NCBI UIDs, the genbank function
 - opens a browser at the URLs for the corresponding GenBank queries;
 - returns an XMLdoc object with the same data.

```
genbank("X95808", disp="browser")

genbank(1430782, disp="data", type="uid")
```
annotate: querying LocusLink

www.ncbi.nlm.nih.gov/LocusLink/

- **locuslinkById**: given one or more LocusIDs, the browser is opened at the URL corresponding to the first gene.

 `locuslinkById("9203")`

- **locuslinkQuery**: given a search string, the results of the LocusLink query are displayed in the browser.

 `locuslinkQuery("zinc finger")`
 http://www.ncbi.nih.gov/LocusLink/list.cgi?Q=zinc finger&ORG=Hs&V=0
annotate: querying PubMed

• For any gene there is often a large amount of data available from PubMed.

• The **annotate** package provides the following tools for interacting with PubMed

 – **pubMedAbst**: a class structure for PubMed abstracts in R.

 – **pubmed**: the basic engine for talking to PubMed.
annotate: pubMedAbst class

Class structure for storing and processing PubMed abstracts in R

- pmid
- authors
- abstText
- articleTitle
- journal
- pubDate
- abstUrl
annotate: high-level tools for querying PubMed

- **pm.getabst**: download the specified PubMed abstracts (stored in XML) and create a list of `pubMedAbst` objects.
- **pm.titles**: extract the titles from a list of PubMed abstracts.
- **pm.abstGrep**: regular expression matching on the abstracts.
annotate: PubMed example

```r
pmid <- get("41046_s_at", env=hgu95aPMID)
pubmed(pmid, disp="browser")


absts <- pm.getabst("41046_s_at", base="hgu95a")
pm.titles(absts)
pm.abstGrep("retardation",absts[[1]])
```
annotate: PubMed example

Slot "articleTitle":
[1] "Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can be assigned to 74 new human genes";

Slot "journal":
[1] "DNA Seq"

Slot "pubdate":
[1] "Apr 1997"

Slot "abstract":
[1] "No URL provided"

Slot "authors":
[1] "S H SK van der Meer" "I H HH Scholten" "I I Hüber" "C C Philippe" "R Y RF Mijarchovski"
[2] "S S Gigengack" "J J Kere" "P F F P Cremer" "H H HH Ropers"

Slot "abstractText":
[1] "In several families with non-specific X-linked mental retardation (XLNR) linkage analyses have assigned the underlying gene defect to this chromosome region. By FISH mapping of libraries generated from different tissues, we have detected three clones derived from a primary library, which are associated to this region. One of these elements, XPAC 29, contains the complete open reading frame of a novel gene which is expressed in lung, brain, and testis. This finding suggests that the gene defect in the XLNR families maps to the region of the chromosome 2p13.1-q11.2."

Slot "articleTitle":

Slot "journal":
[1] "Hum Mol Genet"

Slot "pubdate":
[1] "Jul 1996"

Slot "abstract":
[1] "No URL provided"

> pm.gettitles(absts)
[1] "Cloning and mapping of members of the XTH family."
[2] "Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can be assigned to 74 new human genes."

> pm.abstrgrep("retardation", absts[[1]])
[1] TRUE FALSE TRUE
annotate: PubMed HTML report

- The new function `pmAbst2html` takes a list of `pubMedAbst` objects and generates an HTML report with the titles of the abstracts and links to their full page on PubMed.

```r
pmAbst2html(absts[[1]], filename="pm.html")
```
<table>
<thead>
<tr>
<th>Article Title</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditional targeting of the DNA repair enzyme hOGG1 into mitochondria.</td>
<td>Nov 2002</td>
</tr>
<tr>
<td>Inter-individual variation, seasonal variation and close correlation of OGG1 and ERCC1 mRNA levels in full blood from healthy volunteers</td>
<td>Sep 2002</td>
</tr>
<tr>
<td>A limited association of OGG1 Ser326Cys polymorphism for adenocarcinoma of the lung</td>
<td>May 2002</td>
</tr>
<tr>
<td>Protection of human lung cells against hypoxia using the DNA base excision repair genes hOGG1 and Fpg</td>
<td>Jul 2002</td>
</tr>
<tr>
<td>The human OGG1 DNA repair enzyme and its association with prostatic cancer risk</td>
<td>Jun 2002</td>
</tr>
<tr>
<td>Human OGG1 undergoes serine phosphorylation and associates with the nuclear matrix and mitotic chromosome in vivo.</td>
<td>Jun 2002</td>
</tr>
<tr>
<td>hOGG1 Ser(326)Cys polymorphism and modification by environmental factors of stomach cancer risk in China</td>
<td>Apr 2002</td>
</tr>
<tr>
<td>Association of the hOGG1 Ser280Cys polymorphism with lung cancer risk</td>
<td>Mar 2002</td>
</tr>
<tr>
<td>Reciprocal "Group" underlies substrate recognition and catalytic activation by the human 8-oxoguanine DNA glycosylase</td>
<td>Mar 2002</td>
</tr>
<tr>
<td>Expression of 8-oxoguanine DNA glycosylase is reduced and associated with neurofibrillary tangles in Alzheimer's disease brain.</td>
<td>Jan 2002</td>
</tr>
<tr>
<td>Structure and chromosome location of human OGG1</td>
<td>Month 1999</td>
</tr>
<tr>
<td>Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs</td>
<td>May 1999</td>
</tr>
<tr>
<td>Genetic polymorphism and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA</td>
<td>Jun 1993</td>
</tr>
<tr>
<td>Augmented expression of a human gene for 8-oxoguanine DNA glycosylase (MutM) in B lymphocytes of the dark zone in lymph node germinal centers.</td>
<td>Nov 1997</td>
</tr>
<tr>
<td>Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites.</td>
<td>Oct 1997</td>
</tr>
<tr>
<td>Molecular cloning and functional expression of a human cDNA encoding the endonuclease enzyme 8-hydroxyguanine-DNA glycosylase</td>
<td>Jul 1997</td>
</tr>
<tr>
<td>Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae</td>
<td>Jul 1997</td>
</tr>
</tbody>
</table>
annotate: analysis reports

• A simple interface, ll.htmlpage, can be used to generate an HTML report of analysis results.

• The page consists of a table with one row per gene, with links to LocusLink.

• Entries can include various gene identifiers and statistics.
BioConductor Gene Listing

Golub et al. data, genes with permutation maxT adjusted p-value < 0.01

Locus Link Genes

<table>
<thead>
<tr>
<th>LocusID</th>
<th>Gene name</th>
<th>Chromosome</th>
<th>ALL mean</th>
<th>AML mean</th>
<th>t-statistic</th>
<th>raw p-value</th>
<th>adj p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS91</td>
<td>X57356_at</td>
<td>7</td>
<td>-0.295</td>
<td>1.59</td>
<td>-0.6</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS97</td>
<td>M27891_at</td>
<td>20</td>
<td>-0.81</td>
<td>2.08</td>
<td>-9.78</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS14</td>
<td>M53150_at</td>
<td>15</td>
<td>0.488</td>
<td>1.24</td>
<td>-8.03</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS27</td>
<td>M10936_at</td>
<td>11</td>
<td>-0.294</td>
<td>1.1</td>
<td>-7.98</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS34</td>
<td>L05299_s_at</td>
<td>11</td>
<td>-0.162</td>
<td>1.36</td>
<td>-7.97</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS95</td>
<td>M8133_at</td>
<td>19</td>
<td>0.855</td>
<td>-0.391</td>
<td>7.55</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS10</td>
<td>X74266_at</td>
<td>1</td>
<td>0.669</td>
<td>0.565</td>
<td>7.42</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS13</td>
<td>Z15115_at</td>
<td>3</td>
<td>1.94</td>
<td>3.945</td>
<td>7.38</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS2999</td>
<td>L47789_at</td>
<td>5</td>
<td>0.794</td>
<td>6.779</td>
<td>7.21</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS30</td>
<td>U22276_c_at</td>
<td>6</td>
<td>1.86</td>
<td>0.294</td>
<td>7.28</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS102</td>
<td>HG1612-G71612_at</td>
<td>1</td>
<td>1.91</td>
<td>0.888</td>
<td>7.11</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS122</td>
<td>M41432_at</td>
<td>1</td>
<td>0.431</td>
<td>-0.771</td>
<td>7.08</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS223</td>
<td>L41871_s_at</td>
<td>13</td>
<td>-0.438</td>
<td>3.3</td>
<td>7.08</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS46</td>
<td>Y78396_at</td>
<td>11</td>
<td>-0.097</td>
<td>-1.07</td>
<td>7.07</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS50</td>
<td>X51521_at</td>
<td>5</td>
<td>1.92</td>
<td>1.07</td>
<td>7.05</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS506</td>
<td>U50136_at</td>
<td>5</td>
<td>0.71</td>
<td>1.51</td>
<td>-6.97</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS5711</td>
<td>Y12670_at</td>
<td>1</td>
<td>-0.197</td>
<td>0.892</td>
<td>-6.96</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS703</td>
<td>X74601_at</td>
<td>1</td>
<td>0.611</td>
<td>4.183</td>
<td>5.95</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS976</td>
<td>T00787_at</td>
<td>4</td>
<td>-0.371</td>
<td>3.92</td>
<td>-6.97</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS729</td>
<td>C05243_at</td>
<td>9</td>
<td>0.413</td>
<td>0.982</td>
<td>6.66</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS173</td>
<td>U12266_c_at</td>
<td>19</td>
<td>0.209</td>
<td>-1.16</td>
<td>6.65</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS40</td>
<td>U8279_at</td>
<td>7</td>
<td>0.64</td>
<td>0.504</td>
<td>6.82</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS423</td>
<td>M23197_at</td>
<td>19</td>
<td>-0.881</td>
<td>0.354</td>
<td>6.79</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS159</td>
<td>M53158_at</td>
<td>11</td>
<td>1.21</td>
<td>2.12</td>
<td>-6.77</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS6933</td>
<td>M10936_at</td>
<td>14</td>
<td>1.13</td>
<td>0.132</td>
<td>6.76</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS57</td>
<td>X62654_at</td>
<td>12</td>
<td>0.613</td>
<td>1.35</td>
<td>-6.76</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS404</td>
<td>X07745_at</td>
<td>2</td>
<td>-0.939</td>
<td>0.533</td>
<td>-6.74</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS414</td>
<td>M8133_at</td>
<td>19</td>
<td>0.109</td>
<td>0.938</td>
<td>5.71</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS223</td>
<td>U62136_at</td>
<td>8</td>
<td>-0.163</td>
<td>-0.92</td>
<td>6.68</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS3520</td>
<td>X5946_at</td>
<td>4</td>
<td>-0.541</td>
<td>-4.33</td>
<td>6.61</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
<tr>
<td>GS4544</td>
<td>T00844_at</td>
<td>14</td>
<td>0.830</td>
<td>0.356</td>
<td>6.64</td>
<td>2e-05</td>
<td>2e-05</td>
</tr>
</tbody>
</table>
annotate: chromLoc class

Location information for **one gene**

- **chrom:** chromosome name.
- **position:** starting position of the gene in bp.
- **strand:** chromosome strand +/-.
ann\textcolor{red}{o}tate: \textcolor{red}{c}hrom\textcolor{red}{l}ocation\textcolor{red}{c}lass

Location information for a set of genes
• \textcolor{red}{s}pecies: species that the genes correspond to.
• dat\textcolor{red}{s}ource: source of the gene location data.
• nChrom: number of chromosomes for the species.
• chrom\textcolor{red}{n}ames: chromosome names.
• chrom\textcolor{red}{l}ocs: starting position of the genes in bp.
• chrom\textcolor{red}{l}engths: length of each chromosome in bp.
• geneToChrom: hash table translating gene IDs to location.

Function buildChromClass.
Visualization
geneplotter: cPlot
geneplotter: alongChrom
geneplotter: alongChrom

Expression levels by genes in chromosome 1
scaling method: none
Pre-processing DNA microarray data
Pre-processing

• **affy**: Affymetrix oligonucleotide chips.
• **marray**: Spotted DNA microarrays.
• **vsn**: Variance stabilization for both types of arrays.

Reading in intensity data, diagnostic plots, normalization, computation of expression measures.

The packages start with very different data types, but produce similar objects of class `exprSet`.

One can then use other Bioconductor packages, e.g., `genefilter`, `geneplotter`.
Image quantitation data, e.g. .gpr, .Spot, .gal

Class `marrayRaw`

`maNorm`
`maNormMain`
`maNormScale`

Class `marrayNorm`

`as(swirl.norm, "exprSet")`

Class `exprSet`

Save data to file using `write.exprs` or continue analysis using other Bioconductor packages
Save data to file using `write.exprs` or continue analysis using other Bioconductor packages.
Pre-processing: spotted DNA microarrays
Normalization

• After image processing, we have measures of the red and green fluorescence intensities, \(R \) and \(G \), for each spot on the array.

• **Normalization** is needed to ensure that differences in intensities are indeed due to differential expression, and not some printing, hybridization, or scanning artifact.

• Normalization is necessary before any analysis which involves within or between slides comparisons of intensities, e.g., clustering, classification, testing.
Normalization

• Identify and remove the effects of systematic variation in the measured fluorescence intensities, other than differential expression, for example
 – different labeling efficiencies of the dyes;
 – different amounts of Cy3- and Cy5-labeled mRNA;
 – different scanning parameters;
 – print-tip, spatial, or plate effects, etc.
Normalization

- The need for normalization can be seen most clearly in self-self hybridizations, where the same mRNA sample is labeled with the Cy3 and Cy5 dyes.
- The imbalance in the red and green intensities is usually not constant across the spots within and between arrays, and can vary according to overall spot intensity, location, plate origin, etc.
- These factors should be considered in the normalization.
marray: Pre-processing spotted DNA microarray data

- **marrayClasses**: class definitions for spotted DNA microarray data (cf. MIAME);
 basic methods for manipulating microarray objects: printing, plotting, subsetting, class conversions, etc.

- **marrayInput**: reading in intensity data and textual data describing probes and targets;
 automatic generation of microarray data objects;
 widgets for point & click interface.

- **marrayPlots**: diagnostic plots.

- **marrayNorm**: robust adaptive location and scale normalization procedures.

- **marrayTools**: miscellaneous tools for functional genomics cores facilities at UCB and UCSF.
marrayLayout class

Array layout parameters

- **maNspots**
 - Total number of spots

- **maNgr**
 - Dimensions of grid matrix

- **maNgc**
 - Dimensions of spot matrices

- **maNsrs**
 - Current subset of spots

- **maNsc**
 - Plate IDs for each spot

- **maSub**
 - Control status labels for each spot

- **maPlate**
 - Any notes
marrayRaw class

Pre-normalization intensity data for a batch of arrays

- maRf: Matrix of red and green foreground intensities
- maGb: Matrix of red and green background intensities
- maGf: Matrix of red and green background intensities
- maW: Matrix of spot quality weights
- maLayout: Array layout parameters - marrayLayout
- maGnames: Description of spotted probe sequences - marrayInfo
- maTargets: Description of target samples - marrayInfo
- maNotes: Any notes
marrayNorm class

Post-normalization intensity data for a batch of arrays

- maA: Matrix of average log intensities, A
- maM: Matrix of normalized intensity log ratios, M
- maMloc: Matrix of location and scale normalization values
- maMscale: Matrix of spot quality weights
- maLayout: Array layout parameters - marrayLayout
- maGnames: Description of spotted probe sequences - marrayInfo
- maTargets: Description of target samples - marrayInfo
- maNormCall: Function call
- maNotes: Any notes
marrayInput package

• **marrayInput** provides functions for reading microarray data into R and creating microarray objects of class `marrayLayout`, `marrayInfo`, and `marrayRaw`.

• Input
 – Image quantitation data, i.e., output files from image analysis software.
 E.g. `.gpr` for **GenePix**, `.spot` for **Spot**.
 – Textual description of probe sequences and target samples.
 E.g. gal files, god lists.
marrayInput package

- Widgets for graphical user interface
 - widget.marrayLayout,
 - widget.marrayInfo,
 - widget.marrayRaw.
marrayPlots package

• See demo (marrayPlots).

• Diagnostic plots of spot statistics.
 E.g. red and green log intensities, intensity log ratios M, average log intensities A, spot area.
 – maImage: 2D spatial color images.
 – maBoxplot: boxplots.
 – maPlot: scatter-plots with fitted curves and text highlighted.

• Stratify plots according to layout parameters such as print-tip-group, plate.
 E.g. MA-plots with loess fits by print-tip-group.
2D spatial images

Cy3 background intensity

Swirl 83 array: Cy3 background

Cy5 background intensity

Swirl 83 array: Cy5 background
Boxplots by print-tip-group

Intensity log ratio, M
MA-plot by print-tip-group

\[M = \log_2 R - \log_2 G, \quad A = (\log_2 R + \log_2 G)/2 \]
marrayNorm package

- **maNormMain**: main normalization function, allows robust adaptive location and scale normalization for a batch of arrays
 - intensity or A-dependent location normalization (**maNormLoess**);
 - 2D spatial location normalization (**maNorm2D**);
 - median location normalization (**maNormMed**);
 - scale normalization using MAD (**maNormMAD**);
 - composite normalization;
 - your own normalization function.

- **maNorm**: simple wrapper function.

 maNormScale: simple wrapper function for scale normalization.
marrayTools package

• The marrayTools package provides additional functions for handling two-color spotted microarray data (see devel. version).

• The spotTools and gpTools functions start from Spot and GenePix image analysis output files, respectively, and automatically
 – read in these data into R,
 – perform standard normalization (within print-tip-group loess),
 – create a directory with a standard set of diagnostic plots (jpeg format), excel files of quality measures, and tab delimited files of normalized log ratios M and average log intensities A.
swirl dataset

- Microrrays:
 - 8,448 probes (768 controls);
 - 4 x 4 grid matrix;
 - 22 x 24 spot matrices.
- 4 hybridizations: swirl mutant and wild type mRNA.
- Data stored in object of class `marrayRaw`: `data(swirl)`.

```r
> maInfo(maTargets(swirl))[,3:4]
experiment  Cy3  experiment  Cy5
1          swirl  wild type
2  wild type    swirl
3          swirl  wild type
4  wild type    swirl
```
Pre-processing: oligonucleotide chips
Probe-pair set

GeneChip® Expression Array Design

Reference sequence

mRNA reference sequence

Spaced DNA probe pairs

TTACCCAGTCTTTCTGAGGATACACCAC
TTACCCAGTCTTTGCTGAGGATACACCAC

Perfect Match Oligo
Mismatch Oligo

Fluorescence Intensity Image

Perfect match probe cells
Mismatch probe cells

Figure 1-3 Expression tiling strategy
Terminology

- Each gene or portion of a gene is represented by 16 to 20 oligonucleotides of 25 base-pairs.

- **Probe**: an oligonucleotide of 25 base-pairs, i.e., a 25-mer.
- **Perfect match (PM)**: A 25-mer complementary to a reference sequence of interest (e.g., part of a gene).
- **Mismatch (MM)**: same as PM but with a single homomeric base change for the middle (13th) base (transversion purine <-> pyrimidine, G <->C, A <->T).
- **Probe-pair**: a (PM,MM) pair.
- **Probe-pair set**: a collection of probe-pairs (16 to 20) related to a common gene or fraction of a gene.
- **Affy ID**: an identifier for a probe-pair set.
- The purpose of the MM probe design is to measure non-specific binding and background noise.
Affymetrix files

- Main software from Affymetrix company, *MicroArray Suite* - MAS, now version 5.
- **DAT** file: Image file, $\sim 10^7$ pixels, ~ 50 MB.
- **CEL** file: Cell intensity file, probe level PM and MM values.
- **CDF** file: Chip Description File. Describes which probes go in which probe sets and the location of probe-pair sets (genes, gene fragments, ESTs).
affy: Pre-processing Affymetrix data

- Class definitions for probe-level data: **AffyBatch, ProbSet, Cdf, Cel**.
- Basic methods for manipulating microarray objects: printing, plotting, subsetting.
- Functions and widgets for data input from **CEL** and **CDF** files, and automatic generation of microarray data objects.
- Diagnostic plots: 2D spatial images, density plots, boxplots, MA-plots, etc.
affy: Pre-processing Affymetrix data

- Background estimation.
- Probe-level normalization: quantile and curve-fitting normalization (Bolstad et al., 2002).
- Expression measures: MAS 4.0 AvDiff, MAS 5.0 Signal, MBEI (Li & Wong, 2001), RMA (Irizarry et al., 2003).
- Main functions: `ReadAffy`, `rma`, `expresso`, `express`.
affy classes: AffyBatch

Probe-level intensity data for a batch of arrays (same CDF)

- **cdfName**: Name of CDF file for arrays in the batch
- **nrow** and **ncol**: Dimensions of the array
- **exprs** and **se.exprs**: Matrices of probe-level intensities and SEs. rows → probe cells, columns → arrays.
- **phenoData**: Sample level covariates, instance of class `phenoData`
- **annotation**: Name of annotation data
- **description**: MIAME information
- **notes**: Any notes
affy classes

• **ProbeSet**: PM, MM intensities for individual probe sets.
 - **pm**: matrix of PM intensities for one probe set, rows → 16-20 probes, columns → arrays.
 - **mm**: matrix of MM intensities for one probe set, rows → 16-20 probes, columns → arrays.

 Apply `probeset` to `AffyBatch` object to get a list of `ProbeSet` objects.

• **Cel**: Single array cel intensity data.
• **Cdf**: Information contained in a CDF file.
CDF data packages

- Data packages containing necessary CDF information are available at www.bioconductor.org.
- Packages contain environment objects, which provide mappings between AffyIDs and matrices of probe locations, rows \rightarrow probe-pairs, columns \rightarrow PM, MM (e.g., 20X2 matrix for hu6800).
- `cdfName` slot of `AffyBatch`.
- `HGU95Av2` and `HGU133A` provided in `affy` package.
Reading in data: `ReadAffy`

Creates object of class `AffyBatch`
Accessing PM and MM data

- **probeNames**: method for accessing AffyIDs corresponding to individual probes.
- **pm, mm**: methods for accessing probe-level PM and MM intensities → probes x arrays matrix.
- Can use on **AffyBatch** objects.
Diagnostic plots

- See demo(affy).
- **Diagnostic plots** of probe-level intensities, PM and MM.
 - `image`: 2D spatial color images of log intensities (*AffyBatch*, *Cel*).
 - `boxplot`: boxplots of log intensities (*AffyBatch*).
 - `mva.pairs`: scatter-plots with fitted curves (apply `exprs`, `pm`, or `mm` to *AffyBatch* object).
 - `hist`: density plots of log intensities (*AffyBatch*).
image
hist(Dilution, col=1:4, type="l", lty=1, lwd=3)
boxplot

Small part of dilution study

boxplot(Dilution, col=1:4)
mva.pairs
Expression measures

- **expresso**: Choice of common methods for
 - background correction: `bgcorrect.methods`
 - normalization: `normalize.AffyBatch.methods`
 - probe specific corrections: `pmcorrect.methods`
 - expression measures:
 `express.summary.stat.methods`.

- **rma**: Fast implementation of RMA (Irizarry et al., 2003): model-based background correction, quantile normalization, median polish expression measures.

- **express**: Implementing your own method for computing expression measures.

- **normalize**: Normalization procedures in
 `normalize.AffyBatch.methods` or
 `normalize.methods(object)`.

Expression measures:

expresso

expresso(widget=TRUE)
Probe sequence analysis

• Examine probe intensity based on location relative to 5’ end of RNA sequence of interest.
• Expect probe intensities to be lower at 5’ end compared to 3’ of mRNA.
• E.g.

 \[\text{deg} \leftarrow \text{AffyRNAdeg(Dilution)} \]

 \[\text{plotAffyRNAdeg(deg)} \]