Pre-processing: spotted DNA microarrays
Terminology

- **Target**: DNA hybridized to the array, mobile substrate.
- **Probe**: DNA spotted on the array, aka. spot, immobile substrate.
- **Sector**: collection of spots printed using the same print-tip (or pin), aka. print-tip-group, pin-group, spot matrix, grid.
- The terms **slide** and **array** are often used to refer to the printed microarray.
- **Batch**: collection of microarrays with the same probe layout.
- **Cy3** = Cyanine 3 = green dye.
- **Cy5** = Cyanine 5 = red dye.
Image analysis

• The raw data from a cDNA microarray experiment consist of pairs of image files, 16-bit TIFFs, one for each of the dyes.

• Image analysis is required to extract measures of the red and green fluorescence intensities, R and G, for each spot on the array.
1. **Addressing.** Estimate location of spot centers.

2. **Segmentation.** Classify pixels as foreground (signal) or background.

3. **Information extraction.** For each spot on the array and each dye
 - foreground intensities;
 - background intensities;
 - quality measures.

\rightarrow **R and G** for each spot on the array.
Local background

---- GenePix
---- QuantArray
---- ScanAnalyze

Spot uses Morphological opening
Single-slide data display

• Usually: R vs. G
 \[\log_2 R \text{ vs. } \log_2 G. \]

• Preferred
 \[M = \log_2 R - \log_2 G \]
 vs.
 \[A = \frac{\log_2 R + \log_2 G}{2}. \]

• An MA-plot amounts to a 45° clockwise rotation of a
 \[\log_2 R \text{ vs. } \log_2 G \] plot followed by scaling.
RvG Plot
MvA Plot

\[M = \log_2\left(\frac{R}{G}\right) \]

\[A = \frac{1}{2}\left\{ \log_2(R) + \log_2(G) \right\} / 2 \]
Background matters

Morphological opening

Local background

\[M = \log_2 R - \log_2 G \quad \text{vs.} \quad A = (\log_2 R + \log_2 G)/2 \]
Diagnostic plots

• **Diagnostics plots** of spot statistics
 E.g. red and green log-intensities, intensity log-ratios M, average log-intensities A, spot area.
 – Boxplots;
 – 2D spatial images;
 – Scatter-plots, e.g. MA-plots;
 – Density plots.

• **Stratify** plots according to layout parameters, e.g. print-tip-group, plate.
Boxplots by print-tip-group

Swirl 93 array: pre-normalization log-ratio M

Intensity log-ratio, M
MA-plot by print-tip-group

\[M = \log_2 R - \log_2 G, \quad A = (\log_2 R + \log_2 G)/2 \]
2D spatial images

Swirl 83 array: Cy3 background

Swirl 83 array: Cy5 background

Cy3 background intensity

Cy5 background intensity
2D spatial images

Swirl 93 array: pre-normalization log-ratio M

Intensity log-ratio, M
Normalization
Normalization

- After image processing, we have measures of the red and green fluorescence intensities, R and G, for each spot on the array.

- **Normalization** is needed to ensure that differences in intensities are indeed due to differential expression, and not some printing, hybridization, or scanning artifact.

- Normalization is necessary before any analysis which involves within or between slides comparisons of intensities, e.g., clustering, testing.
Normalization

- Identify and remove the effects of systematic variation in the measured fluorescence intensities, other than differential expression, for example
 - different labeling efficiencies of the dyes;
 - different amounts of Cy3- and Cy5-labeled mRNA;
 - different scanning parameters;
 - print-tip, spatial, or plate effects, etc.
Normalization

- The need for normalization can be seen most clearly in self-self hybridizations, where the same mRNA sample is labeled with the Cy3 and Cy5 dyes.
- The imbalance in the red and green intensities is usually not constant across the spots within and between arrays, and can vary according to overall spot intensity, location, plate origin, etc.
- These factors should be considered in the normalization.
Self-self hybridization

\[\log_2 R \text{ vs. } \log_2 G \]

\[M = \log_2 R - \log_2 G, \quad A = \frac{\log_2 R + \log_2 G}{2} \]
Self-self hybridization

Robust local regression within sectors (print-tip-groups) of intensity log-ratio M on average log-intensity A.

$M = \log_2 R - \log_2 G$, $A = (\log_2 R + \log_2 G)/2$
Example of Normalization

\[
\log_2 R/G \leftarrow \log_2 R/G - L(\text{intensity, sector, \ldots})
\]

- **Constant normalization:** \(L \) is constant
- **Adaptive normalization:** \(L \) depends on a number of predictor variables, such as spot intensity \(A \), sector, plate origin.
 - Intensity-dependent normalization.
 - Intensity and sector-dependent normalization.
 - 2D spatial normalization.
 - Other variables: time of printing, plate, etc.
- **Composite normalization.** Weighted average of several normalization functions.
2D images of L values

- Global median normalization
- Global loess normalization
- Within-print-tip-group loess normalization
- 2D spatial normalization
2D images of normalized M-L

Global median normalization

Global loess normalization

Within-print-tip-group loess normalization

2D spatial normalization
Boxplots of normalized M-L

Global median normalization

Global loess normalization

Within-print-tip-group loess normalization

2D spatial normalization
MA-plots of normalized M-L

Global median normalization

Global loess normalization

Within-print-tip-group loess normalization

2D spatial normalization
Some References

• Dudoit, Yang, Callow, and Speed: Statistica Sinica (2002)
• Dudoit and Yang (2002) Chap 2 in *The Analysis of Gene Expression Data*
• Yang, Buckley, Dudoit, and Speed: JCGS (2002)
• Kerr and Churchill: Biostatistics (2001)
• Colantuoni, Henry, Zeger, and Pevsner: Bioinformatics (2002)
marray: Pre-processing spotted DNA microarray data

- **marrayClasses:**
 - class definitions for cDNA microarray data (MIAME);
 - basic methods for manipulating microarray objects: printing, plotting, subsetting, class conversions, etc.

- **marrayInput:**
 - reading in intensity data and textual data describing probes and targets;
 - automatic generation of microarray data objects;
 - widgets for point & click interface.

- **marrayPlots:** diagnostic plots.

- **marrayNorm:** robust adaptive location and scale normalization procedures.
Pre-processing: oligonucleotide chips
Probe-pair set

GeneChip® Expression Array Design

5'

mRNA reference sequence

3'

Reference sequence

Spaced DNA probe pairs

TTACCAGTCTTCTGAGGATACACCACC
TTACCAGTCTTCTGAGGATACACCACC

Perfect Match Oligo
Mismatch Oligo

Fluorescence Intensity Image

Perfect match probe cells

Mismatch probe cells

Figure 1-3 Expression tiling strategy
Before Hybridization

Sample 1

Array 1

Sample 2

Array 2
More Realistic

Sample 1

Sample 2

Array 1

Array 2
Non-specific Hybridization

Array 1

Array 2
GeneChip® Expression Array Design

Figure 1-3 Expression tiling strategy
Terminology

- Each gene or portion of a gene is represented by 16 to 20 oligonucleotides of 25 base-pairs.

- **Probe**: an oligonucleotide of 25 base-pairs, i.e., a 25-mer.
- **Perfect match (PM)**: A 25-mer complementary to a reference sequence of interest (e.g., part of a gene).
- **Mismatch (MM)**: same as PM but with a single homomeric base change for the middle (13th) base (transversion purine <-> pyrimidine, G <->C, A <->T).
- **Probe-pair**: a (PM,MM) pair.
- **Probe-pair set**: a collection of probe-pairs (11 to 20) related to a common gene or fraction of a gene.
- **Affy ID**: an identifier for a probe-pair set.
- The purpose of the MM probe design is to measure non-specific binding and background noise.
Why Analyze Probe Level Data?

• Quality control
 – Spatial Effects
 – RNA degradation (Leslie Cope)

• Detection of defective probes

• Transcript sequence “estimates” change

• Ways to reduce to expression measure keep improving
QC

raw values
Statistical Problem

• Each gene is represented by 20 pairs (PM and MM) of probe intensities

• Each array has 8K-20K genes

• Usually there are various arrays

• Obtain measure for each gene on each array: Summarize 20 pairs

• Background correction and normalization are issues
Default until 2002 (MAS 4.0)

• GeneChip® software used \(\text{Avg.diff} \)

\[
\text{Avg.diff} = \frac{1}{|A|} \sum_{j \in A} (PM_j - MM_j)
\]

• with \(A \) a set of “suitable” pairs chosen by software.

• Obvious Problems:
 – Many negative expression values
 – No log transform
Why use log?

Original Scale

Log Scale
Current default (MAS 5.0)

- GeneChip\textregistered new version uses something else
 \[
 \text{signal} = \text{TukeyBiweight}\{\log(PM_j - MM^*_j)\}
 \]
 - with MM^* a version of MM that is never bigger than PM.
 - Ad-hoc background procedure and scale normalization are used.
Can this be improved?
Use Spike-In Experiment
Use Spike-In Experiment
Why background correct?

Concentration of 0 pM

Concentration of 0.5 pM

Concentration of 1.0 pM
Why normalize?

Density of PM probe intensities for Spike-In chips

Compliments of Ben Bolstad
Why fit statistical models to obtain summaries?
Example of use of statistical models

• Instead of subtracting MM
• Assume $PM = B + S$
• To estimate S, use expectation: $E[S|B+S]$
• After normalization, assume:
 $$\log_2 S_{ij} = E_i + P_j + \varepsilon_{ij}$$
• Estimate E_i using robust procedure
• We call this procedure RMA
• Does it make a difference?
Perfect

Ranks
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Some References

• Li and Wong: PNAS (2001)
Differential gene expression
Data Reduction in Microarray Experiments

Images
↓
Intensities (normalization)
↓
Expression measures (normalization)
↓
Score
↓
Choose a cut off: report a list of differentially expressed genes and error rate
Differential gene expression

- Identify genes whose expression levels are associated with a response or covariate of interest
 - clinical outcome such as survival, response to treatment, tumor class;
 - covariate such as treatment, dose, time.

- **Estimation**: In a statistical framework, assigning a score can be viewed as estimating an effects of interest (e.g. difference in means, slope, interaction). We can also take the variability of these estimates into account.

- **Testing**: In a statistical framework, deciding on a cut-off can be viewed as an assessment of the statistical significance of the observed associations.
Example: Two populations

A common problem is to find genes that are differentially expressed in two populations.

Many method papers appear in both statistical and molecular biology literature.

The proposed scores range from:

- ad-hoc summaries of fold-change,
- variantes on the t-test,
- and posterior means obtained from Bayesian or empirical Bayes methods.

What’s the difference? Mainly the way in which the variation within population is incorporated
Should we consider variability of estimate?

fold change: 2.6, t-test: 0.4, p-value: 0.15
Should we consider variability of estimate?

Expression

fold change: 2.5, t-test: 6.9, p-value: < 0.01
Should we consider variability of estimate?

fold change: 1.2, t-test: 7.2, p-value: < 0.01
Some Examples

Notation: log expression, population i, gene j, array k:

$$Y_{jk}(i), j = 1, \ldots, J, k = 1, \ldots, K = K_1 + K_2, i = 1, 2.$$

- log fold-change: $\bar{Y}_{j(2)} - \bar{Y}_{j(1)}$.

- t-statistic: $\frac{\bar{Y}_{j(2)} - \bar{Y}_{j(1)}}{s_j}$

- SAM shrunken-t: $\frac{\bar{Y}_{j(2)} - \bar{Y}_{j(1)}}{s_j + s_0}$.

- Wilcoxon rank-sum

- Bayesian (e.g., Baldi and Long): $\frac{\bar{Y}_{j(2)} - \bar{Y}_{j(1)}}{\sqrt{(1-w)s_j^2 + ws_0^2}}$.
Does it make a difference?

• Data:
 Spike-in data from Affymetrix, 16 spike-in genes with known spikein concentrations

• Properties of “good method”
 – rank truely differentially expressed genes higher than non-differential ones → sensitivity, specificity
 ROC curves
$N=3$
N=12

The figure shows a receiver operating characteristic (ROC) curve for different methods:
- SAM
- average difference in log(expressions)
- ratio of averaged expressions
- Wilcoxon

The x-axis represents 1-specificity, while the y-axis represents sensitivity.
Hypothesis testing

Once you have a score for each gene, how do you decide on a cut-off? p-values are popular. Are they appropriate?

- Test for each gene null hypothesis: no differential expression.

\[H_g : \text{the expression level of gene } g \]
\[\text{is not associated with the covariate or response.} \]

Two types of errors can be committed

- **Type I error** or **false positive**
 say that a gene is differentially expressed when it is not, i.e.,
 reject a true null hypothesis.

- **Type II error** or **false negative**
 fail to identify a truly differentially expressed gene, i.e.,
 fail to reject a false null hypothesis.
Multiple hypothesis testing

• Large multiplicity problem: thousands of hypotheses are tested simultaneously!
 – Increased chance of false positives.
 – E.g. chance of at least one \(p \)-value < \(\alpha \) for \(G \) independent tests is \(1 - (1 - \alpha)^G \) and converges to one as \(G \) increases. For \(G = 1,000 \) and \(\alpha = 0.01 \), this chance is 0.9999568!
 – Individual \(p \)-values of 0.01 no longer correspond to significant findings.

• Need to **adjust for multiple testing** when assessing the statistical significance of the observed associations.
Multiple hypothesis testing

- Define an appropriate **Type I error** or **false positive rate**.
- Develop multiple testing procedures that
 - provide **strong control** of this error rate,
 - are **powerful** (few false negatives),
 - take into account the **joint distribution** of the test statistics.
- Report **adjusted p-values** for each gene which reflect the **overall** Type I error rate for the experiment.
- **Resampling** methods are useful tools to deal with the unknown joint distribution of the test statistics.
Multiple hypothesis testing

<table>
<thead>
<tr>
<th># true null hypotheses</th>
<th>U</th>
<th>V</th>
<th>G₀</th>
</tr>
</thead>
<tbody>
<tr>
<td># false null hypotheses</td>
<td>T</td>
<td>S</td>
<td>G₁</td>
</tr>
</tbody>
</table>

Where:
- **U**: # non-rejected hypotheses
- **V**: # rejected hypotheses
- **T**: # false null hypotheses
- **S**: # rejected hypotheses
- **G₀**: Type I error
- **G₁**: Type II error

Three Examples

FWER (Family-Wise Error Rate)
Probability of including at least one non-differentially expressed genes into your list: \(p(V > 0) \)

False discovery rate (FDR). The FDR of Benjamini & Hochberg (1995) is the expected proportion of Type I errors among the rejected hypotheses, i.e.,

\[
FDR = E(Q),
\]

\[
Q \equiv \begin{cases}
V/R, & \text{if } R > 0, \\
0, & \text{if } R = 0.
\end{cases}
\]

pFDR. Expected proportion of false discoveries among the genes in your list conditioning on “at least one gene is included in the differential list” : \(E(Q|R > 0) \)
Does it make a difference?

- Data:
 Spike-in data from Affymetrix, 14 spike-in genes with known concentrations

- Properties of “good method”: reported error rate close to true error rate

\[
\log \left(\frac{\text{predicted error rate}}{\text{observed error rate}} \right) \approx 0
\]
Log ratio of predicted and observed error rates

![Graph showing the log ratio of predicted and observed error rates]

- pFDR
- .90 quantile of pFDR
- SAM fdr
- .90 quantile of SAM fdr
Demo

• We will demonstrate how to go from a probe level data from two samples hybridized to six Affymetrix arrays to a list of candidate genes

• Bioconductor packages used:
 – affy: Preprocessing probe level data
 – Biobase: organizes expression level data
 – multtest: functions for multiple testing
Affymetrix files

- Main software from Affymetrix company, *MicroArray Suite* - MAS, now version 5.
- **DAT** file: Image file, \(~10^7\) pixels, \(~50\) MB.
- **CEL** file: Cell intensity file, probe level PM and MM values.
- **CDF** file: Chip Description File. Describes which probes go in which probe sets and the location of probe-pair sets (genes, gene fragments, ESTs).
affy: Pre-processing Affymetrix data

- Class definitions for probe-level data: `AffyBatch`, `ProbSet`, `Cdf`, `Cel`.
- Basic methods for manipulating microarray objects: printing, plotting, subsetting.
- Functions and widgets for data input from `CEL` and `CDF` files, and automatic generation of microarray data objects.
- Diagnostic plots: 2D spatial images, density plots, boxplots, MA-plots, etc.
affy classes: AffyBatch

Probe-level intensity data for a batch of arrays (same CDF)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdfName</td>
<td>Name of CDF file for arrays in the batch</td>
</tr>
<tr>
<td>nrow</td>
<td>Dimensions of the array</td>
</tr>
<tr>
<td>ncol</td>
<td>Matrices of probe-level intensities and SEs</td>
</tr>
<tr>
<td>exprs</td>
<td>rows → probe cells, columns → arrays.</td>
</tr>
<tr>
<td>se.exprs</td>
<td></td>
</tr>
<tr>
<td>phenoData</td>
<td>Sample level covariates, instance of class <code>phenoData</code></td>
</tr>
<tr>
<td>annotation</td>
<td>Name of annotation data</td>
</tr>
<tr>
<td>description</td>
<td>MIAME information</td>
</tr>
<tr>
<td>notes</td>
<td>Any notes</td>
</tr>
</tbody>
</table>
CDF data packages

- Data packages containing necessary CDF information are available at www.bioconductor.org.
- Packages contain environment objects, which provide mappings between AffyIDs and matrices of probe locations, rows \rightarrow probe-pairs, columns \rightarrow PM, MM (e.g., 20X2 matrix for hu6800).
- cdfName slot of AffyBatch.
- HGU95Av2 and HGU133A provided in affy package.
Expression measures:

expresso

expresso(widget=TRUE)
Acknowledgements

- **Bioconductor core team**
 - Ben Bolstad, Biostatistics, UC Berkeley
 - Vincent Carey, Biostatistics, Harvard
 - Francois Collin, GeneLogic
 - Leslie Cope, JHU
 - Laurent Gautier, Technical University of Denmark, Denmark
 - Yongchao Ge, Statistics, UC Berkeley
 - Robert Gentleman, Biostatistics, Harvard
 - Jeff Gentry, Dana-Farber Cancer Institute
 - John Ngai Lab, MCB, UC Berkeley
 - Juliet Shaffer, Statistics, UC Berkeley
 - Terry Speed, Statistics, UC Berkeley
 - Zhijin Wu, Biostatistics, JHU
 - Yee Hwa (Jean) Yang, Biostatistics, UCSF
 - Jianhua (John) Zhang, Dana-Farber Cancer Institute
- Spike-in and dilution datasets:
 - Gene Brown’s group, Wyeth/Genetics Institute
 - Uwe Scherf’s group, Genomics Research & Development, GeneLogic.
- GeneLogic and Affymetrix for permission to use their data.
Supplemental Slides
Diagnostic plots

- See `demo(affy)`.`
- **Diagnostic plots** of probe-level intensities, PM and MM.
 - `image`: 2D spatial color images of log intensities (`AffyBatch`, `Cel`).
 - `boxplot`: boxplots of log intensities (`AffyBatch`).
 - `mva.pairs`: scatter-plots with fitted curves (apply `exprs`, `pm`, or `mm` to `AffyBatch` object).
 - `hist`: density plots of log intensities (`AffyBatch`).
hist(Dilution, col=1:4, type="l", lty=1, lwd=3)
boxplot

Small part of dilution study

boxplot(Dilution, col=1:4)
mva.pairs

MVA plot

A2.5

0.277

0.378

B2.5

0.231

C2.5

MVA plot

A2.5

0.204

0.189

B2.5

0.231

C2.5

A
Expression measures

- **expresso**: Choice of common methods for
 - background correction: `bgcorrect.methods`
 - normalization: `normalize.AffyBatch.methods`
 - probe specific corrections: `pmcorrect.methods`
 - expression measures: `express.summary.stat.methods`.

- **rma**: Fast implementation of RMA (Irizarry et al., 2003): model-based background correction, quantile normalization, median polish expression measures.

- **express**: Implementing your own method for computing expression measures.

- **normalize**: Normalization procedures in `normalize.AffyBatch.methods` or `normalize.methods(object)`.
Probe sequence analysis

• Examine probe intensity based on location relative to 5’ end of RNA sequence of interest.
• Expect probe intensities to be lower at 5’ end compared to 3’ of mRNA.
• E.g.

 `deg<-AffyRNAdeg(Dilution)`

 `plotAffyRNAdeg(deg)`
The multtest package

- Multiple testing procedures for controlling
 - Family-Wise Error Rate - FWER: Bonferroni, Holm (1979), Hochberg (1986), Westfall & Young (1993) maxT and minP;

- Tests based on t- or F-statistics for one- and two-factor designs.
- Permutation procedures for estimating adjusted p-values.
- Fast permutation algorithm for minP adjusted p-values.
- Documentation: tutorial on multiple testing.
marrayLayout class

Array layout parameters

- **maNspots**: Total number of spots
- **maNgr** and **maNgc**: Dimensions of grid matrix
- **maNsR** and **maNsC**: Dimensions of spot matrices
- **maSub**: Current subset of spots
- **maPlate**: Plate IDs for each spot
- **maControls**: Control status labels for each spot
- **maNotes**: Any notes
marrayRaw class

Pre-normalization intensity data for a batch of arrays

<table>
<thead>
<tr>
<th>maRf</th>
<th>maGf</th>
<th>Matrix of red and green foreground intensities</th>
</tr>
</thead>
<tbody>
<tr>
<td>maRb</td>
<td>maGb</td>
<td>Matrix of red and green background intensities</td>
</tr>
<tr>
<td>maW</td>
<td></td>
<td>Matrix of spot quality weights</td>
</tr>
<tr>
<td>maLayout</td>
<td></td>
<td>Array layout parameters - marrayLayout</td>
</tr>
<tr>
<td>maGnames</td>
<td></td>
<td>Description of spotted probe sequences - marrayInfo</td>
</tr>
<tr>
<td>maTargets</td>
<td></td>
<td>Description of target samples - marrayInfo</td>
</tr>
<tr>
<td>maNotes</td>
<td></td>
<td>Any notes</td>
</tr>
</tbody>
</table>
marrayNorm class

Post-normalization intensity data for a batch of arrays

- **maA**: Matrix of average log intensities, A
- **maM**: Matrix of normalized intensity log ratios, M
- **maMloc, maMscale**: Matrix of location and scale normalization values
- **maW**: Matrix of spot quality weights
- **maLayout**: Array layout parameters - `marrayLayout`
- **maGnames**: Description of spotted probe sequences - `marrayInfo`
- **maTargets**: Description of target samples - `marrayInfo`
- **maNormCall**: Function call
- **maNotes**: Any notes
marrayInput package

- **marrayInput** provides functions for reading microarray data into R and creating microarray objects of class `marrayLayout`, `marrayInfo`, and `marrayRaw`.

- Input
 - Image quantitation data, i.e., output files from image analysis software. E.g. `.gpr` for GenePix, `.spot` for Spot.
 - Textual description of probe sequences and target samples. E.g. gal files, god lists.
marrayInput package

- Widgets for graphical user interface
 - `widget.marrayLayout`
 - `widget.marrayInfo`
 - `widget.marrayRaw`
marrayPlots package

• See demo (marrayPlots).
• Diagnostic plots of spot statistics.
 E.g. red and green log intensities, intensity log ratios M, average log intensities A, spot area.
 – maImage: 2D spatial color images.
 – maBoxplot: boxplots.
 – maPlot: scatter-plots with fitted curves and text highlighted.
• Stratify plots according to layout parameters such as print-tip-group, plate.
 E.g. MA-plots with loess fits by print-tip-group.
marrayNorm package

- **maNormMain**: main normalization function, allows robust adaptive location and scale normalization for a batch of arrays
 - intensity or A-dependent location normalization (*maNormLoess*);
 - 2D spatial location normalization (*maNorm2D*);
 - median location normalization (*maNormMed*);
 - scale normalization using MAD (*maNormMAD*);
 - composite normalization;
 - your own normalization function.

- **maNorm**: simple wrapper function.
 maNormScale: simple wrapper function for scale normalization.
marrayTools package

• The marrayTools package provides additional functions for handling two-color spotted microarray data (see devel. version).
• The spotTools and gpTools functions start from Spot and GenePix image analysis output files, respectively, and automatically
 – read in these data into R,
 – perform standard normalization (within print-tip-group loess),
 – create a directory with a standard set of diagnostic plots (jpeg format), excel files of quality measures, and tab delimited files of normalized log ratios M and average log intensities A.
swirl dataset

• Microrrays:
 – 8,448 probes (768 controls);
 – 4 x 4 grid matrix;
 – 22 x 24 spot matrices.
• 4 hybridizations: swirl mutant and wild type mRNA.
• Data stored in object of class `marrayRaw`: `data(swirl)`.
• > `maInfo(maTargets(swirl))[,3:4]`

<table>
<thead>
<tr>
<th>experiment</th>
<th>Cy3</th>
<th>experiment</th>
<th>Cy5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>swirl</td>
<td>wild type</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>wild type</td>
<td>swirl</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>swirl</td>
<td>wild type</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>wild type</td>
<td>swirl</td>
<td></td>
</tr>
</tbody>
</table>
Scale normalization

• For print-tip-group scale normalization, assume all print-tip-groups have the same spread in M.

• Denote true and observed log-ratio by μ_{ij} and M_{ij}, resp., where $M_{ij} = a_i \mu_{ij}$, and i indexes print-tip-groups and j spots. Robust estimate of a_i is

$$\hat{a}_i = \frac{MAD_i}{\sqrt[\infty]{\prod_{i=1}^{I} MAD_i}}$$

where MAD_i is MAD of M_{ij} in print-tip-group i.

• Similarly for between-slides scale normalization.
Microarray sample pool

MSP
Rank invariant
Housekeeping
Tubulin, GAPDH
MA-plot by print-tip-group

\[M = \log_2 R - \log_2 G, \quad A = \frac{\log_2 R + \log_2 G}{2} \]