Bioconductor – MGED 2003
Sandrine Dudoit
Robert Gentleman

Outline
• reproducible research
• annotation and meta-data
• GO – more advanced usage

Reproducible Research
• A publication about scientific computing is not scholarship, it is merely an advertisement of scholarship, the scholarship lies elsewhere (Claerbout)
• Electronic journals are largely electronic only in their delivery mechanism. A few trees survive but for the author and the reader little has changed.

Reproducible Research
• most recipients of electronic documents have a computational engine available
• this suggests that we could in fact move (in a structured way) to navigable documents with dynamic content
• these documents would allow the reader to recreate (and modify) the results being reported

Early Work
• Claerbout’s lab at Stanford
 – use of Makefiles
• Buckheit and Donoho (1995)
 – plots should be reproducible
• Vince Carey
 – Literate Programming
• Duncan Temple Lang
 – Literate programming
 – extensible dynamic docs
• Tony Rossini
 – Literate Data Analysis
• Fritz Leisch
 – Sweave

Compendiums
• we need to provide an entity that contains
 – text: the written content of the article(s)
 – code: computer code that will execute to provide outputs such as tables and graphics
 – data: on which the code operates and about which the text is reporting
Compendiums

- an amalgam of code, data, and text
- delivered as a single object that the user can transform into different outputs
- some outputs
 - papers suitable for publication
 - interim reports
 - long and short versions of articles
 - reports for clients etc.

Compendiums: Proof of Concept

- Sweave is a system for combining text and R code in alternating chunks
- the document looks like LaTeX but with code inserted in a special (but easy to use way)
- the document can be woven to produce a LaTeX document with all code chunks replaced by their outputs

Sweave

\section{Data}

We see an interesting pattern in Figure\ref{F1}

<<F1, fig=TRUE>>=
plot(data.x, data.y)
@
And so we like it.

Compendiums: An Implementation

- the R package system provides a mechanism for both packaging together, data, code and Sweave documents and for distributing these
- with these two tools we have a proof of concept – one can carry out reproducible research with these tools
- I can give you a package that represents a paper and you can run it on your machine to reproduce that paper

Compendiums

- the concept is completely general
- given infrastructural tools (packages, distribution and transformation) any language (ie. Perl or Python) can provide these services

Annotation

- One of the largest challenges in analyzing genomic data is associating the experimental data with the available biological metadata, e.g., sequence, gene annotation, chromosomal maps, literature.
- AND MAKING THAT DATA AVAILABLE FOR COMPUTATION
- Bioconductor provides three main packages for this purpose:
 - annotate (end-user);
 - AnnBuilder (developer)
 - annaffy (end-user – will see a name change)
WWW resources

- Nucleotide databases: e.g. GenBank.
- Gene databases: e.g. LocusLink, UniGene.
- Protein sequence and structure databases: e.g. SwissProt, Protein DataBank (PDB).
- Literature databases: e.g. PubMed, OMIM.
- Chromosome maps: e.g. NCBI Map Viewer.
- Pathways: e.g. KEGG.
- **Entrez** is a search and retrieval system that integrates information from databases at NCBI (National Center for Biotechnology Information).
- If you know of some we should be using – please let us know

annotate: matching IDs

Important tasks

- Associate manufacturers or in-house probe identifiers to other available identifiers.
 - E.g. Affymetrix IDs → LocusLink LocusID
 - Affymetrix IDs → GenBank accession number.
- Associate probes with biological data such as chromosomal position, pathways.
- Associate probes with published literature data via PubMed (need PMID).

annotate: Versioning

- It is important to keep all version information together with the mappings
- It is important to allow for new mappings to be used when they become available
- There are some interesting challenges and concerns that arise when comparing the strategies of on-line mappings versus compiled mappings

annotate: matching IDs

<table>
<thead>
<tr>
<th>Affymetrix identifier</th>
<th>“41046_s_at”</th>
</tr>
</thead>
<tbody>
<tr>
<td>LocusLink, LocusID</td>
<td>“9203”</td>
</tr>
<tr>
<td>GenBank accession #</td>
<td>“X95808”</td>
</tr>
<tr>
<td>Gene symbol</td>
<td>“ZNF261”</td>
</tr>
<tr>
<td>PubMed, PMID</td>
<td>“10486218”</td>
</tr>
<tr>
<td></td>
<td>“9205841”</td>
</tr>
<tr>
<td></td>
<td>“8817323”</td>
</tr>
<tr>
<td>Chromosomal location</td>
<td>“X”, “Xq13.1”</td>
</tr>
</tbody>
</table>

Annotation data packages

- The Bioconductor project provides **annotation data packages**, that contain many different mappings to interesting data
 - Mappings between Affy IDs and other probe IDs: hgu95av2 for HGU95Av2 GeneChip series, also, hgp133a, hu6800, ngeo74a, nges14a, VC
 - Affy CDF data packages.
 - Probe sequence data packages.
- These packages are updated and expanded regularly as new data become available.
- They can be downloaded from the Bioconductor website and also using `installDataPackage`.
- `DPExplorer`: a widget for interacting with data packages.
- `AnnBuilder`: tools for building annotation data packages.

annotate: matching IDs

- Much of what `annotate` does relies on matching symbols.
- This is basically the role of a hash table in most programming languages.
- In R, we rely on `environments`.
- The annotation data packages provide R environment objects containing key and value pairs for the mappings between two sets of probe identifiers.
- Keys can be accessed using the `[[` function.
- Matching values in different environments can be accessed using the `get` or `multiget` functions.
annotate: matching IDs

```r
> library(hgu95av2)
> get("41046_s_at", env = hgu95av2ACCNUM)
[1] "X95808"
> get("41046_s_at", env = hgu95av2LOCUSID)
[1] "9203"
> get("41046_s_at", env = hgu95av2SYMBOL)
[1] "ZNF261"
> get("41046_s_at", env = hgu95av2GENENAME)
[1] "zinc finger protein 261"
> get("41046_s_at", env = hgu95av2SUMFUNC)
[1] "Contains a putative zinc-binding motif (MWM)|Proteome"
> get("41046_s_at", env = hgu95av2UNIGENE)
[1] "Hs.9568"
```

annotate: WWW queries

```
annotate: querying databases

The annotate package provides tools for
• Searching and processing information from various WWW biological databases
  – GenBank
  – LocusLink
  – PubMed.
• Regular expression searching of PubMed abstracts.
• Generating nice HTML reports of analyses, with links to biological databases.
```

annotate: querying databases

```
> library(hgu95av2)
> get("41046_s_at", env = hgu95av2CHR)
[1] "X"
> get("41046_s_at", env = hgu95av2CHRLOC)
X
-6892698
> get("41046_s_at", env = hgu95av2MAP)
[1] "Xq13.1"
> get("41046_s_at", env = hgu95av2PMID)
[1] "10486218" "9205841" "8817323"
> get("41046_s_at", env = hgu95av2GO)
TAS          TAS          IEA
"GO:0003677" "GO:0007275" "GO:0016021"
```

annotate: WWW queries

```
annotate: matching IDs

• Instead of relying on the general R functions for environments, new user-friendly functions have been written for accessing and working with specific identifiers.
  • E.g. getGO, getGOdesc, getLL, getPMID, getSYMBOL.
```
annotate: querying GenBank

- Given a vector of GenBank accession numbers or NCBI UIDs, the `genbank` function
 - opens a browser at the URLs for the corresponding GenBank queries;
 - returns an `XMLdoc` object with the same data.

```r
genbank("X95808", disp="browser")
genbank(1430782, disp="data", type="uid")
```

annotate: querying LocusLink
www.ncbi.nlm.nih.gov/LocusLink/

- `locuslinkByID`: given one or more LocusIDs, the browser is opened at the URL corresponding to the first gene.

```r
locuslinkByID("9203")
```
- `locuslinkQuery`: given a search string, the results of the LocusLink query are displayed in the browser.

```r
locuslinkQuery("zinc finger")
http://www.ncbi.nlm.nih.gov/LocusLink/list.cgi?Q=zinc finger&ORG=Hs&V=0
```

annotate: querying PubMed

- For any gene there is often a large amount of data available from PubMed.
- The `annotate` package provides the following tools for interacting with PubMed
 - `pubMedAbst`: a class structure for PubMed abstracts in R.
 - `pubmed`: the basic engine for talking to PubMed (`pmidQuery`).

annotate: pubMedAbst class

Class structure for storing and processing PubMed abstracts in R
- `pmid`
- `authors`
- `abstText`
- `articleTitle`
- `journal`
- `pubDate`
- `abstUrl`

annotate: high-level tools for querying PubMed

- `pm.getabst`: download the specified PubMed abstracts (stored in XML) and create a list of `pubMedAbst` objects.
- `pm.titles`: extract the titles from a list of PubMed abstracts.
- `pm.abstGrep`: regular expression matching on the abstracts.

annotate: PubMed example

```r
pmid <- get("41046_s_at", env=hgu95aPMID)
pubmed(pmid, disp="browser")

absts <- pm.getabst("41046_s_at", base="hgu95a")
pm.titles(absts)
pm.abstGrep("retardation", absts[[1]])
```
The new function `pmAbst2HTML` takes a list of `pubMedAbst` objects and generates an HTML report with the titles of the abstracts and links to their full page on PubMed.

```
pmAbst2HTML(absts[[1]], filename="pm.html")
```

A simple interface, `ll.htmlpage`, can be used to generate an HTML report of analysis results.

- The page consists of a table with one row per gene, with links to LocusLink.
- Entries can include various gene identifiers and statistics.

The Gene Ontology Consortium coordinates the development and refinement of GO.

- GO is a set of three ontologies for gene products:
 - molecular function
 - cellular component
 - biological process
• the relationship between gene products and BP, CC, MF are all many to many
• a child term may have one or more parent terms
• transmembrane receptor protein-tyrosine kinase is child of both transmembrane receptor and protein tyrosine kinase

• the relationship between a parent and a child term can be either an is-a relationship or a part-of relationship
• a mitotic chromosome is a chromosome
• a telomere is a part-of a chromosome
• the child term is more specific than the parent term

• GO itself has no reference to genes
• GO specifies a terminology and the relationships between terms
• each GO term is associated with a single node (so I will use the words term and node interchangeably) in the DAG

• so GO as described above is a set of terms
• as such it can be used as the basis for searching relevant literature (McCray et al)
• but its real power comes from the annotation of specific genes and gene products at the different terms
• this is carried out by many organizations using criteria proposed by GO

• a gene is annotated at one or more terms
• for each term the annotation must be supported by evidence and the evidence code is available (e.g)
 – TAS: traceable author statement
 – IEP: inferred from expression pattern
 – ISS: inferred from sequence similarity
• and many others

• as part of Bioconductor we proved a GO package which has all the GO specific data
 – terms and relationships
 – some whole species data
• for each instrument (chip) we provide chip specific data
 – maps from the probes to GO terms
 – counts of probes per GO term + children
• constantly evolving and being updated
GO Data
• for any gene obtain the most specific GO labels that gene is annotated at
• using these terms and the GO structure obtain the graph that has nodes representing those terms and all parents and edges for all child parent relationships
• this is called the induced GO graph or just the GO graph
• BP, CC and MF all induce different graphs

ABL 1
• ABL1 has Affymetrix identifier 1635_at
• this is annotated at GO:0004713 protein tyrosine kinase
GO:0003677 DNA binding
• we then use the GO structure to produce the plot

Analysis: What Can We Do?
• we can use GO to provide annotations for lists or clusters of genes
• we can use GO to provide sets of genes with specific properties (or relationships)
• We can define distances between GO terms using the graph structure
• we can define distances between genes using GO and other data

ALL Example
• ALL experiment, 93 patients (courtesy Ritz, Foa, Chiaretti)
• selected genes that could differentiate three groups, ALL1/AF4, BCR/ABL, NEG
• this yielded 136 probes and 129 unique LocusLink ids of these 90 have GO MF annotation
• are there MF terms that are over represented in this list of genes?

ALL Example
• for the 129 genes there were a total of 192 MF terms in the induced graph
• each of these categories had probes annotated at it (spread from 1 to 9478; 37 had 10 or fewer probes)
ALL Example

- the induced MF graph was plotted
- nodes were colored as follows:
 - ALL1/AF4: red (66)
 - BCR/ABL: blue (91)
 - NEG: green (11)
 - no winner: white (24)

Relating Terms to Gene Lists

- suppose that we have a list of n interesting genes (derived in any old way)
- for each GO term (in each ontology) we can ask whether the genes in the list are over-represented at that node
- this question can also be phrased in terms of a test of homogeneity (2-way table)

Terms to Gene Lists

- consider all genes assayed (or all genes expressed may be more relevant), N
- we have an urn with N balls, n of them are white (the interesting ones) and N-n are black
- for a GO term we have k genes annotated at that term
- this is like k draws from the Urn and we ask whether we got more white balls than expected (x=number of white balls)

Terms to Gene Lists

- this is simply a Hypergeometric calculation
- issues:
 - multiple testing
 - lack of independence: genes are annotated at parents and children
 - can we (should we) take account of the GO hierarchy?
 - GO terms with too many genes (not specific)
 - GO terms with too few genes (not interesting)
 - shouldn't the genes all be interesting in the same way?

ALL Example

- for each MF category a Hypergeometric test was performed
- N=6422, n=90, for each term we found the number of unique LocusLink Ids annotated at that term were determined (this was k)
- 8 nodes with \(p < 0.01 \) and 30 nodes with \(p < 0.05 \)
- we will explore the 8 nodes
ALL: 8 GO Terms

<table>
<thead>
<tr>
<th>TERM</th>
<th>DESCRIPTION</th>
<th>k</th>
<th>x</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO:0005515</td>
<td>protein binding</td>
<td>800</td>
<td>22</td>
<td>0.0012</td>
</tr>
<tr>
<td>GO:0003821</td>
<td>class II major histocompatibility complex antigen</td>
<td>9</td>
<td>5</td>
<td>6e-8</td>
</tr>
<tr>
<td>GO:0003779</td>
<td>actin binding</td>
<td>111</td>
<td>7</td>
<td>9e-4</td>
</tr>
<tr>
<td>GO:0008092</td>
<td>cytoskeletal protein binding</td>
<td>155</td>
<td>8</td>
<td>0.0014</td>
</tr>
<tr>
<td>GO:0004601</td>
<td>peroxidase</td>
<td>20</td>
<td>3</td>
<td>0.0026</td>
</tr>
<tr>
<td>GO:0016684</td>
<td>oxidoreductase, acting on peroxide as acceptor</td>
<td>20</td>
<td>3</td>
<td>0.0026</td>
</tr>
<tr>
<td>GO:0045012</td>
<td>MHC class II receptor</td>
<td>4</td>
<td>2</td>
<td>0.0011</td>
</tr>
<tr>
<td>GO:0005095</td>
<td>GTPase inhibitor</td>
<td>6</td>
<td>2</td>
<td>0.0028</td>
</tr>
</tbody>
</table>

Using the GO Structure

- notice that the sequence 3779->8092->5515
- has decreasing p-values 0.001 -> 0.002 -> 0.009
- evidence: 7/111; 8/155; 22/800
- how do we interpret this?
- set up as a series of nested 2 by 2 tables we might make some progress (log-rank)

Clustering and GO

- another way to view the previous test is as a two-way table and a test of homogeneity

<table>
<thead>
<tr>
<th>Node</th>
<th>Interesting</th>
<th>YES</th>
<th>NO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td></td>
<td>5</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>NO</td>
<td></td>
<td>85</td>
<td>6328</td>
<td>6413</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>90</td>
<td>6332</td>
<td>6422</td>
</tr>
</tbody>
</table>

- p-value=5e-8

Using the GO Structure

- do we take that as stronger evidence in favor of an interesting effect than if there was no gradient?
- what about the child-parent relationships, are is-a and has-a important?
- are we happier if at least one of the is-a children show a similar effect?
Issues

• it will be important in some contexts to account for and adjust for the evidence on which an annotation was based
• for example if exploring sequence similarity as it relates to function all ISS based annotations should be excluded

Conclusions

• GO and the various collaborators have provided a very rich data set which has the potential to add meaning to data analyses
• there are a number of ways of using this data and it is not yet clear which will be most beneficial
• it is clear that we need better tools for working with the data

Acknowledgements

• Vincent Carey
• Steve North
• Emden Gansner
• Debby Swayne
• Duncan Temple Lang
• Sabina Chiaretti
• J. Ritz
• Jeff Gentry
• Jianhua Zhang
• Denise Scholtens
• Beiying Ding
• Elizabeth Whalen
• Cheng Li
• R. Foa