An Introduction to Wavelets and some Applications

Milan, May 2003

Anestis Antoniadis

Laboratoire IMAG-LMC
University Joseph Fourier
Grenoble, France
Outline

- General facts on wavelet decompositions
Outline

- General facts on wavelet decompositions
- Multiresolution analyses
Outline

- General facts on wavelet decompositions
 - Multiresolution analyses
 - Computational algorithms
Outline

- General facts on wavelet decompositions
- Multiresolution analyses
- Computational algorithms
- Approximation and Compression
Outline

- General facts on wavelet decompositions
 - Multiresolution analyses
 - Computational algorithms
- Approximation and Compression
 - Linear
Outline

- General facts on wavelet decompositions
 - Multiresolution analyses
 - Computational algorithms
- Approximation and Compression
 - Linear
 - Nonlinear
Outline

- General facts on wavelet decompositions
 - Multiresolution analyses
 - Computational algorithms
- Approximation and Compression
 - Linear
 - Nonlinear
- Estimation and Denoising
Outline

- General facts on wavelet decompositions
 - Multiresolution analyses
 - Computational algorithms
- Approximation and Compression
 - Linear
 - Nonlinear
- Estimation and Denoising
 - Regularization
Outline

- General facts on wavelet decompositions
 - Multiresolution analyses
 - Computational algorithms
- Approximation and Compression
 - Linear
 - Nonlinear
- Estimation and Denoising
 - Regularization
- Asymptotics and Applications
Generalities

Interest in representing an "observed" signal as an appropriate superposition of "elementary" functions in an adapted way.
Generalities

- Interest in representing an "observed" signal as an appropriate superposition of "elementary" functions in an adapted way.

- To obtain such representations that can be useful in practice, one needs fast computational algorithms.
Generalities

- Interest in representing an "observed" signal as an appropriate superposition of "elementary" functions in an adapted way.

- To obtain such representations that can be useful in practice, one needs fast computational algorithms.

- Once such representations are derived, one would like to simplify them in a efficient way by choosing appropriately only few elementary components. This may be seen as an approximation or compression task.
The Haar basis

The Haar basis is the simplest example of a wavelet basis. It allows us to introduce in a clear and simple way the wavelet idea, without going to far into mathematical details. Suppose we are given a discretized version of an integrable function f on $[0, 1]$ on an equidistant grid of 8 values.
The Haar basis

The Haar basis is the simplest example of a wavelet basis. It allows us to introduce in a clear and simple way the wavelet idea, without going too far into mathematical details. Suppose we are given a discretized version of an integrable function f on $[0, 1]$ on an equidistant grid of 8 values. Let the discrete signal be:

$$[2 \ 4 \ 8 \ 12 \ 14 \ 0 \ 2 \ 1]$$

A digital signal on $[0, 1]$
We could represent the above digital signal in a different way in order to exploit a possible correlation between adjacent points. To this end, for every pair of neighbors we compute their averages to obtain: \([3 \ 10 \ 7 \ 1.5]\)

Averages of neighbor values

To avoid any loss of information we also need to record some other values that represent the loss of information when going from the finer grid to the coarser.
We choose

\[-1 \quad -2 \quad 7 \quad 0.5\]

Differences of Input and its approximation

Indeed, 3+(-1)=2, 3-(-1)=4, 10+(-2)=8, \ldots
We choose

\[
[-1 \quad -2 \quad 7 \quad 0.5]
\]

Differences of Input and its approximation

Indeed, 3+(-1)=2, 3-(-1)=4, 10+(-2)=8, \ldots

input signal = signal with lower resolution (4 values) and a quadruple of differences (the details).
The Haar transform

We can repeat the procedure over the averages again and again to obtain:

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Averages</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>[2 4 8 12 14 0 2 1]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>[3 10 7 1.5]</td>
<td>[−1 -2 7 0.5]</td>
</tr>
<tr>
<td>2</td>
<td>[6.5 4.25]</td>
<td>[−3.5 2.75]</td>
</tr>
<tr>
<td>1</td>
<td>[5.375]</td>
<td>[1.125]</td>
</tr>
</tbody>
</table>

thus representing the input as:

\[
\begin{bmatrix}
5.375 & 1.125 \\
-3.5 & 2.75 \\
1 & 0.5
\end{bmatrix}
\]
Input = digital signal

Average → Difference

Average → Difference

Average → Difference

The Haar transform
The digital input may be considered as a piecewise constant function on $[0, 1]$ on the intervals $I_{3,k} = [2^{-3}k, 2^{-3}(k + 1)]$, $k = 0, \ldots, 2^3 - 1$. If $\phi(x) = I_{[0,1]}(x)$ and $\phi_{j,k}(x) = \phi(2^j x - k)$, the function may be written as

$$f(x) = 2\phi_{3,0}(x) + 4\phi_{3,1}(x) + 8\phi_{3,2}(x) + 12\phi_{3,3}(x) + \cdots$$

$$14\phi_{3,4}(x) + 0\phi_{3,5}(x) + 2\phi_{3,6}(x) + 1\phi_{3,7}(x).$$

We then may re-write:

$$f(x) = 3\phi_{2,0}(x) + 10\phi_{2,1}(x) + 7\phi_{2,2}(x) + 1.5\phi_{2,3}(x) + \cdots$$

$$(-1)\psi_{2,0}(x) + (-2)\psi_{2,1}(x) + 7\psi_{2,2}(x) + 0.5\psi_{2,3}(x),$$

where $\psi(x) = I_{[0,1/2]}(x) - I_{[1/2,1]}(x)$.

An Introduction to Wavelets and some Applications – p. 9/54
V_0 subspace of $L^2([0, 1[)$ spanned by the constant functions on $[0, 1[.$
V_0 subspace of $L^2([0, 1[)$ spanned by the constant functions on $[0, 1[.$

V_1 subspace spanned by the piecewise constant functions on $[0, 1/2[\text{ and } [1/2, 1[.$
\(V_0 \) subspace of \(L^2([0, 1[) \) spanned by the constant functions on \([0, 1[\).

\(V_1 \) subspace spanned by the piecewise constant functions on \([0, 1/2[\) and \([1/2, 1[\)

\(V_j \) subspace spanned by the piecewise constant functions on the intervals \(I_{j,k}, k = 0, 2^j − 1 \).
\(V_0 \) subspace of \(L^2([0, 1]) \) spanned by the constant functions on \([0, 1]\).

\(V_1 \) subspace spanned by the piecewise constant functions on \([0, 1/2]\) and \([1/2, 1]\)

\(V_j \) subspace spanned by the piecewise constant functions on the intervals \(I_{j,k}, k = 0, 2^j - 1 \).

They are nested. Moreover, for each of them, the families \(\{\phi_{j,k}, k = 0, \ldots, 2^j - 1\} \) form a basis. For the usual inner product \(\langle f, g \rangle = \int_0^1 f(x)\bar{g}(x)dx \), these families are orthogonal and \(\{\psi_{j,k}, k = 0, \ldots, 2^j - 1\} \) is a basis of the vector space \(W_j \), orthogonal complement of \(V_j \) in \(V_{j+1} \).
A multiresolution analysis of $L^2(\mathbb{R})$ is a nested sequence of closed subspaces $V_j, j \in \mathbb{Z}$, of $L^2(\mathbb{R})$,

$$\cdots \subset V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset \cdots,$$

such that

$$\bigcap_j V_j = \{0\}, \quad \bigcup_j V_j = L^2(\mathbb{R}), \quad f(x) \in V_j \iff f(2x) \in V_{j+1},$$

There exists a function $\phi \in V_0$ such that

$$V_0 = \left\{ f \in L^2(\mathbb{R}) : f(x) = \sum_{k \in \mathbb{Z}} \alpha_k \phi(x - k) \right\},$$

$$\{\phi_k, k \in \mathbb{Z}\}$$ is a "stable" basis of V_0, i.e. $0 < m \leq \|\phi_k\| \leq M < \infty$ and $A\|f\|^2 \leq \sum_k \alpha_k^2 \leq B\|f\|^2$.

An Introduction to Wavelets and some Applications – p.11/54
The function \(\phi \) is called the *scaling function* of the MRA. Let
\[
\phi_{j,k}(x) = 2^{j/2} \phi(2^j x - k).
\]
For an orthogonal MRA, an orthonormal basis of \(V_j \) is
\[
\{ \phi_{j,k} : k \in \mathbb{Z} \}
\] and
\[
P_j f = \sum_{k \in \mathbb{Z}} \langle f, \phi_{j,k} \rangle \phi_{j,k},
\]
is the approximation of \(f \) at resolution \(2^{-j} \).
If \(W_j \) is the orthogonal complement of \(V_j \) in \(V_{j+1} \), we obtain another sequence \(\{ W_j : j \in \mathbb{Z} \} \) of closed orthogonal subspaces of \(L^2(\mathbb{R}) \), such that each \(W_j \) is a refinement of \(W_0 \), and their direct sum is \(L^2(\mathbb{R}) \).
One can show that there exists a function ψ such that W_0 is spanned by its integer translates. Then ψ is called the wavelet associated to φ. For each integer j, the family

$$\{\psi_{j,k}, k \in \mathbb{Z}\}$$

is an orthonormal basis of W_j.

If $g \in L^2(\mathbb{R})$ we have:

$$g = \sum_{k \in \mathbb{Z}} c_{j_0,k} \varphi_{j_0,k} + \sum_{j \geq j_0} \sum_{k \in \mathbb{Z}} d_{j,k} \psi_{j,k}$$

where j_0 is a level of coarse approximation.
The first part in the right hand side is the orthogonal projection $P_{j_0}g$ of g on V_{j_0}, and the second part represents the details. The coefficients are defined by

$$c_{j,k} = \langle g, \phi_{j,k} \rangle$$

and

$$d_{j,k} = \langle g, \psi_{j,k} \rangle.$$

The c’s are called the scaling coefficients while the d’s are the wavelet coefficients.
Since $V_0 \subset V_1$, any function of V_0 has an expansion in terms of the basis $\{\phi_{1,k}, k \in \mathbb{Z}\}$ of V_1. For $\phi(x) = \phi_0(x) = \phi_{0,0}(x)$ we have

$$\phi(x) = \sum_{k \in \mathbb{Z}} a_k \phi_{1,k}(x) = \sqrt{2} \sum_{k \in \mathbb{Z}} a_k \phi(2x - k)$$

with

$$a_k = \langle \phi, \phi_{1,k} \rangle \in \ell^2(\mathbb{Z}).$$
When the scaling functions are compactly supported, there is only a finite number of non-zero coefficients among the a_k's and

$$\phi(x) = \sqrt{2} \sum_{k=0}^{D-1} a_k \phi(2x - k)$$

The coefficients $a = \{a_k\}$ define the filter corresponding to ϕ.

The scaling function is compactly supported if and only if a has a finite number of non-zero coefficients.
By analogy, and since $W_0 \subset V_1$ we also have

$$\psi(x) = \sqrt{2} \sum_{k=0}^{D-1} b_k \phi(2x - k)$$

with

$$b_k = \langle \psi, \phi_{1,k} \rangle \in \ell^2(\mathbb{Z}).$$

The filters $\{a_k\}$ and $\{b_k\}$ are conjugate mirror filter banks.
A perfect reconstruction filter bank decomposes a signal by filtering and subsampling. It reconstructs it by inserting zeroes, filtering and summation.

The filter bank is said to be a perfect reconstruction filter bank when \(a_2 = a_0 \). If, additionally, \(h = h_2 \) and \(g = g_2 \), the filters are called conjugate mirror filters.
Numerical evaluation

No analytic formulas for evaluating numerically ϕ and ψ.

For compactly supported wavelets we have two algorithms:

- An iterative algorithm (Daubechies and Lagarias cascade algorithm).
- An iterative method for solving the dilatation equations.
The Cascade Algorithm

Build ϕ using the filter a_0, \ldots, a_{D-1} with D even and ≥ 4. Start with $\phi_0(x) = I_{[0,1]}(x)$. Compute then recursively the successive approximations of $\phi(x)$ using a_0, \ldots, a_{D-1}, i.e.

$$\phi_m(x) = \sum_{k=0}^{D-1} a_k \phi_{m-1}(2x - k).$$

One can show that this algorithm converges towards ϕ, when the iterations m converge to ∞. In practice, 8 iterations suffice for a good discretization of ϕ.
Example: ϕ Daubechies $D = 4$

Building ϕ by the cascade algorithm
Periodic wavelets

Until now the functions were defined on \(\mathbb{R} \). While this seems reasonable for some applications, in practice most functions are observed over bounded domains.

There exist many ways to define a MRA adapted to a bounded domain.

One of these, the most simple and direct way, is by using periodic wavelets.

Let the scaling function \(\phi \in L^2(\mathbb{R}) \) and the associated wavelet \(\psi \in L^2(\mathbb{R}) \) be given.
For all $j, l \in \mathbb{Z}$, we define the periodic scaling function of period 1, by

$$\tilde{\phi}_{j,l}(x) = \sum_{n=-\infty}^{+\infty} \phi_{j,l}(x + n)$$

and the associated periodic wavelet by

$$\tilde{\psi}_{j,l}(x) = \sum_{n=-\infty}^{+\infty} \psi_{j,l}(x + n).$$
Note that, for $j \leq 0$ and $l \in \mathbb{Z}$,

$$\tilde{\phi}_{j,l}(x) = 2^{j/2} \sum_n \phi(2^j(x + n - 2^{-j}l)) = \tilde{\phi}_{j,0}(x)$$

Therefore

$$j \leq 0 \quad \tilde{\phi}_{j,l}(x) = 2^{-j/2}.$$

Similarly we can show that

$$\forall j \leq -1, \quad \tilde{\psi}_{j,l} = 0.$$
For ϕ and ψ generated with a filter of length D:

\[\tilde{\phi}_{j,l}(x) = 2^{-j/2} \text{ for all } j \leq 0 \text{ and all } l \in \mathbb{Z}. \]
For ϕ and ψ generated with a filter of length D:

- $\tilde{\phi}_{j,l}(x) = 2^{-j/2}$ for all $j \leq 0$ and all $l \in \mathbb{Z}$.
- $\tilde{\psi}_{j,l}(x) = 0$ for all $j \leq -1$ and all $l \in \mathbb{Z}$.
For ϕ and ψ generated with a filter of length D:

- $\tilde{\phi}_{j,l}(x) = 2^{-j/2}$ for all $j \leq 0$ and all $l \in \mathbb{Z}$.
- $\tilde{\psi}_{j,l}(x) = 0$ for all $j \leq -1$ and all $l \in \mathbb{Z}$.
- for all $j > J_0 \geq \log_2(D - 1)$ and $x \in [0, 1]$,

$$\tilde{\phi}_{j,l}(x) = \phi_{j,l}(x)I_{j,l}(x) + \phi_{j,l}(x + 1)I_{j,l}^c(x)$$

with an identical relation for $\tilde{\psi}$.
For \(\phi \) and \(\psi \) generated with a filter of length \(D \):

- \(\tilde{\phi}_{j,l}(x) = 2^{-j/2} \) for all \(j \leq 0 \) and all \(l \in \mathbb{Z} \).
- \(\tilde{\psi}_{j,l}(x) = 0 \) for all \(j \leq -1 \) and all \(l \in \mathbb{Z} \).
- for all \(j > J_0 \geq \log_2(D - 1) \) and \(x \in [0, 1] \),

\[
\tilde{\phi}_{j,l}(x) = \phi_{j,l}(x)I_{I_{j,l}}(x) + \phi_{j,l}(x + 1)I_{I_{j,l}^c}(x)
\]

with an identical relation for \(\tilde{\psi} \).

\[
\int_{0}^{1} f(x)\tilde{\phi}_{j,l}(x)dx = \int_{-\infty}^{\infty} \tilde{f}(x)\phi_{j,l}(x)dx
\]

(similarly for \(\psi \)) where \(\tilde{f}(x) = f(x - \lfloor x \rfloor) \), \(x \in \mathbb{R} \).
The periodic scaling functions and corresponding periodic wavelets define an orthonormal MRA of $L^2([0, 1])$. The approximation and details spaces are given by:

$$\tilde{V}_j = \text{span} \left\{ \tilde{\phi}_{j,l}, l = 0, \ldots, 2^j - 1 \right\}$$

and

$$\tilde{W}_j = \text{span} \left\{ \tilde{\psi}_{j,l}, l = 0, \ldots, 2^j - 1 \right\}$$

We obtain, for $J_0 \geq 0$ the following decomposition of $L^2([0, 1])$:

$$L^2([0, 1]) = \tilde{V}_{J_0} \oplus \left(\bigoplus_{j \geq J_0} \tilde{W}_j \right).$$
Fast discrete wavelet transform

Orthogonality of the scaling functions and the associated wavelets lead to a fast computational algorithm for decomposing or synthetizing a function of V_j. Let $f \in L^2(\mathbb{R})$. We have

$$(PV_j f)(x) = (PV_{j-1} f)(x) + (PW_{j-1} f)(x),$$

formulated as

$$(PV_j f)(x) = \sum_{\ell \in \mathbb{Z}} c_{j-1,\ell} \phi_{j-1,\ell}(x) + \sum_{\ell \in \mathbb{Z}} d_{j-1,\ell} \psi_{j-1,\ell}(x).$$

Aim: find a relation between the sequence of coefficients $c_{j,\ell}$ and the sequences $c_{j-1,\ell}$ and $d_{j-1,\ell}$.
The key is

\[\phi_{j-1, \ell}(x) = \sum_{k=0}^{D-1} a_k \phi_{j, 2 \ell+k}(x) \text{ and } \psi_{j-1, \ell}(x) = \sum_{k=0}^{D-1} b_k \phi_{j, 2 \ell+k}(x) \]

We have

\[c_{j-1, \ell} = \int f(x) \phi_{j-1, \ell}(x) dx = \int f(x) \sum_{k=0}^{D-1} a_k \phi_{j, 2 \ell+k}(x) dx = \sum_{k=0}^{D-1} a_k \int f(x) \phi_{j, 2 \ell+k}(x) dx = \sum_{k=0}^{D-1} a_k c_{j, 2 \ell+k} \]

and \[d_{j-1, \ell} = \sum_{k=0}^{D-1} b_k c_{j, 2 \ell+k}. \]
Conversely, noting that
\[\phi_{j,\ell}(x) = \sum_{k} a_{\ell-2k} \phi_{j-1,k}(x) + \sum_{k} b_{\ell-2k} \psi_{j-1,k}(x) \]
we obtain
\[c_{j,\ell} = \sum_{k} a_{\ell-2k} c_{j-1,k} + \sum_{k} b_{\ell-2k} d_{j-1,k}(x) \]
These two above equations lead to the discrete fast wavelet transform.
As an example, let

\[c = \begin{pmatrix} c_{3,0} \\ c_{3,1} \\ c_{3,2} \\ c_{3,3} \\ c_{3,4} \\ c_{3,5} \\ c_{3,6} \\ c_{3,7} \end{pmatrix}. \]
The decomposition steps are:

\[
\begin{pmatrix}
 c_{3,0} \\
 c_{3,1} \\
 c_{3,2} \\
 c_{3,3} \\
 c_{3,4} \\
 c_{3,5} \\
 c_{3,6} \\
 c_{3,7}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 c_{2,0} \\
 c_{2,1} \\
 c_{2,2} \\
 c_{2,3} \\
 d_{2,0} \\
 d_{2,1} \\
 d_{2,3} \\
 d_{2,4}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 c_{1,0} \\
 c_{1,1} \\
 d_{1,0} \\
 d_{1,1} \\
 d_{2,0} \\
 d_{2,1} \\
 d_{2,3} \\
 d_{2,4}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 c_{0,0} \\
 d_{0,0} \\
 d_{1,0} \\
 d_{1,1} \\
 d_{2,0} \\
 d_{2,1} \\
 d_{2,2} \\
 d_{2,4}
\end{pmatrix}.
\]

The final vector is the results of the DWT of the initial values.
Matrix Representation of the DWT

Let

\[c_j = (c_{j,0}, \ldots, c_{j,2^j-1})^T \]

and

\[d_j = (d_{j,0}, \ldots, d_{j,2^j-1})^T \]

The DWT equations define linear maps from \(\mathbb{R}^{2^j} \) to \(\mathbb{R}^{2^j-1} \) and may be written as:

\[c_{j-1} = A_j c_j \]
\[d_{j-1} = B_j c_j \]

where \(A_j \) and \(B_j \) are \(2^{j-1} \times 2^j \) matrices defined via the filters.
Approximation properties

A linear approximation of square integrable function f on an orthonormal basis $\mathcal{B} = \{e_n\}_{n \in \mathbb{Z}}$ projects f on the space spanned by M vectors chosen a priori in \mathcal{B}:

$$f_M = \sum_{n=0}^{M-1} \langle f, e_n \rangle e_n.$$

The quality of the approximation

$$\|f - f_M\|_2 = \sum_{n \geq M} |\langle f, e_n \rangle|^2$$

depends on the properties of f with respect to \mathcal{B}.
Fourier analysis provides efficient approximations for global smooth functions by projecting them on the space spanned by sinusoidal waves of frequencies the first M low frequencies.

In a wavelet basis the signal is projected on V_M.

Here too, the quality of approximation depends on the global regularity of the function lf.
Nonlinear approximation

A linear approximation of f may be enhanced if the M vectors are chosen \textit{a posteriori}, in a way that depends on f. For M fixed, the approximation error is minimized by taking the M vectors for which the coefficients $|\langle f, e_n \rangle|$ are the largest.

If \mathcal{B} is a wavelet basis, the amplitude of the coefficients is related to the local regularity of f and a nonlinear approximation amounts in using an adaptive sampling whose resolution increases locally where the function is irregular.
First application: Compression

Consider a function f expanded in a basis as

$$f(x) = \sum_{k=1}^{m} c_k e_k(x).$$

The input data are the coefficients c_1, \ldots, c_m. The aim of compression is to define an approximation of f using much less coefficients (possible in a different basis) with a minimum loss of information. Given an upper bound for the error, say $\epsilon > 0$, we seek

$$\tilde{f}(x) = \sum_{k=1}^{\tilde{m}} \tilde{c}_k \tilde{e}_k(x),$$

with $\tilde{m} < m$ and $\|f - \tilde{f}\| \leq \epsilon$.
For simplicity consider that the basis is fixed one for all and that it is orthonormal.
Let \(\sigma \) be a permutation of \(\{1, 2, \ldots, m\} \) and let \(\tilde{f} \) the approximation using the first \(\tilde{m} \) coefficients of the permutation \(\sigma \):

\[
\tilde{f}(x) = \sum_{k=1}^{\tilde{m}} c_{\sigma(k)} e_{\sigma(k)}(x).
\]

The \(L^2 \) error of this approximation is

\[
\|f - \tilde{f}\|_2^2 = \sum_{k=\tilde{m}+1}^{m} |c_{\sigma(k)}|^2.
\]

To minimize it \(\sigma \) must rank the coefficients in a decreasing order of their absolute magnitude.
Compression example

Example

Compression

JumpSine Signal

50 Top Wavelet Coeffs

800 Top Fourier Coeffs

50 Top Fourier Coeffs

c error = 0.0027

c error = 0.0130

An Introduction to Wavelets and some Applications – p.38/54
Second application: denoising

Data:

\[Y_j = f(t_j) + \epsilon_j, \quad j = 1, \ldots, n \]

Usually: \(t_j \) equidistant, \(n = 2^m \), and \(\epsilon_j \) i.i.d mean 0 and variance \(\sigma^2 \). In practice,

- nonequispaced design;
Second application: denoising

Data:

\[Y_j = f(t_j) + \epsilon_j, \quad j = 1, \ldots, n \]

Usually: \(t_j \) equidistant, \(n = 2^m \), and \(\epsilon_j \) i.i.d mean 0 and variance \(\sigma^2 \). In practice,

- nonequispaced design;
- number of data points not a power of 2.
Second application: denoising

Data:

\[Y_j = f(t_j) + \epsilon_j, \quad j = 1, \ldots, n \]

Usually: \(t_j \) equidistant, \(n = 2^m \), and \(\epsilon_j \) i.i.d mean 0 and variance \(\sigma^2 \). In practice,

- nonequispaced design;
- number of data points not a power of 2.
- design may be random;
Second application: denoising

Data:

\[Y_j = f(t_j) + \epsilon_j, \quad j = 1, \ldots, n \]

Usually: \(t_j \) equidistant, \(n = 2^m \), and \(\epsilon_j \) i.i.d mean 0 and variance \(\sigma^2 \). In practice,

- nonequispaced design;
- number of data points not a power of 2;
- design may be random;
- the errors may not be of constant variance;
Linear methods

- Extension of penalized least-squares methods
Linear methods

- Extension of penalized least-squares methods
- Choice of the smoothing parameter by GCV.
Linear methods

- Extension of penalized least-squares methods
- Choice of the smoothing parameter by GCV.
- An example.
Simple idea:
Approximate $2^{m/2} \langle f, \phi_{m,k} \rangle \sim f(k/2^m)$ and replace the raw data $\{Y_i\}$ by its interpolation in V_m:

$$\hat{f}_m(t) = 2^{-m/2} \sum_{k \in \mathbb{Z}} Y_k \phi_{m,k}(t)$$

Minimize

$$\|\hat{f}_m - f\|_{L^2([0,1])}^2 + \lambda J_{spp}^p(P_{V_0}f)$$

where J_0 is given and J_{spp} is norm on $B_{pp}^s([0,1])$.

An Introduction to Wavelets and some Applications – p.41/54
The norm of \(g \in B^s_{pq}([0, 1]) \) is equivalent to

\[
J_{spq}(\alpha, \beta) = \| \alpha_{j_0} \|_p + \left(\sum_{j=0}^{\infty} (2^j (s + (1/2) - (1/p)) \| \beta_j \|_p)^q \right)^{1/q}.
\]
The solution

\[f_\lambda = \sum_{k=0}^{2^{j_0} - 1} c_{j_0,k} \varphi_{j_0,k} + \sum_{j=J_0}^{m} \sum_{k=0}^{2^j - 1} \hat{\beta}_{j,k} \psi_{j,k}, \]

• \(c_{j_0,k}, \quad k = 0, \ldots, 2^{j_0} - 1 \) are the scaling coefficients of the DWT of \(\hat{f}_m \).

• \(\hat{\beta}_{j,k} = \frac{d_{j,k}}{1+\lambda 2^{s_j}}, \quad j \geq j_0, k = 0, \ldots, 2^j - 1, \) with \(d_{j,k} \) the wavelet coefficients of \(\mathcal{W} \hat{f}_m \).
Cross validation

One may choose J_0 and λ given the data and show that the resulting estimation has good properties (at least asymptotically). One popular method is cross validation.

A real data example with D8 compared to spline smoothing.
Nonlinear methods

- Decompose the signal into its wavelet coefficients
Nonlinear methods

- Decompose the signal into its wavelet coefficients
- Extract the most significant coefficients by shrinkage or thresholding.
Nonlinear methods

- Decompose the signal into its wavelet coefficients
- Extract the most significant coefficients by shrinkage or thresholding.
- Denoise by applying the inverse wavelet transform on the resulting coefficients.
Almost all existing nonlinear methods are of the form:

\[2^{-1} \sum_{i=1}^{n} (z_i - \theta_i)^2 + \lambda \sum_{i \geq i_0} p(|\theta_i|), \]

where \(z_i \) is the \(i \)th row of \(z = WY_n \) and \(p_\lambda \) is an appropriate penalty function.
Hard thresholding

1. Transform the data via DWT: \(\tilde{\Theta} = W \cdot Y \).
2. To separate the signal from its noise, threshold the coefficients: set \(\hat{\theta}_{j,k} = \tilde{\theta}_{j,k} \) if \(|\tilde{\theta}_{j,k}| \) is large, 0 otherwise.
3. Estimate the signal by \(\hat{f} = W^{-1} \cdot \hat{\Theta} \).
Soft thresholding

1. Transform the data via DWT: $\tilde{\Theta} = W \cdot Y$.

2. To separate the signal form its noise, threshold the coefficients: set

 $$
 \hat{\theta}_{j,k} = \begin{cases}
 \tilde{\theta}_{j,k} - \lambda, & \text{si } |\tilde{\theta}_{j,k}| > \lambda, \\
 0, & \text{si } |\tilde{\theta}_{j,k}| \leq \lambda,
 \end{cases}
 $$

3. Estimate the signal by $\hat{f} = W^{-1} \cdot \hat{\Theta}$.

Many ways for choosing the thresholds. The initial resolution j_0 is usually set to $(\log_2 N)/2$.

An Introduction to Wavelets and some Applications – p.48/54
Examples

(a) L_p penalty with $p = 1$ (soft $(p=1)$), $p = 0.6$ (short dash) and $p = 0.2$ (solid); (b) hard; (c) SCAD (robust); (d) transformed soft.
(a) Hard thresholding and L_1 penalty

(b) L_p penalty ($p=0.6$)

(c) Smoothly clipped L_1 penalty

(d) Transformed L_1 penalty

Corresponding estimates
Universal thresholding (VisuShrink)

When the noise is Gaussian, most of the coefficients (normalized as: $\sqrt{N}d_{j,k}/\sigma$) are essentially white noise. This suggests to take $\lambda = \sqrt{2 \log N}$, producing the principle VisuShrink implemented in the package wavethresh of R.
Properties

When compared, it seems that hard thresholding produces estimates with larger variance while soft thresholding is more biased.

Some authors propose a robust version:

\[
\hat{\theta}_{j,k}^{\lambda_1,\lambda_2} = \begin{cases}
0 & \text{si } |\tilde{\theta}_{j,k}| \leq \lambda_1 \\
\text{sgn}(\tilde{\theta}_{j,k}) \frac{\lambda_2(|\tilde{\theta}_{j,k}| - \lambda_1)}{\lambda_2 - \lambda_1} & \text{si } \lambda_1 < |\tilde{\theta}_{j,k}| \leq \lambda_2 \\
\tilde{\theta}_{j,k} & \text{si } |\tilde{\theta}_{j,k}| > \lambda_2,
\end{cases}
\]

which groups the advantages of both thresholding methods.
References

Software

- WaveLab for Matlab.
- Wavelet Toolbox for Matlab.
- Wavelab for Scilab.
- S+Wavelets for S-plus.
- Wavetresh 2.2 for S-plus and R.

Many new denoising algorithms are implemented in MATLAB and are available at

www-lmc.imag.fr/SMS/software