Outline

• Cells, chromosomes, and cell division
• DNA structure and replication
• Proteins
• Central dogma: transcription, translation
• Microarrays
• Pathways
A brief history

1865 Genes are particulate factors
1903 Chromosomes are hereditary units
1910 Genes lie on chromosomes
1913 Chromosomes contain linear arrays of genes
1927 Mutations are physical changes in genes
1931 Recombination is caused by crossing over
1944 DNA is the genetic material
1945 A gene codes for a protein
1953 DNA is a double helix
1958 DNA replicates semiconservatively
1961 Genetic code is triplet
1977 DNA can be sequenced
1997 Genomes can be sequenced

Gregor Mendel (1823-1884)
Thomas Hunt Morgan (1866-1945)
Francis Crick (1916-)
James D. Watson (1928-)
From chromosomes to proteins
Cells
Cells

- **Cells**: the fundamental working units of every living organism.
- **Metazoa**: multicellular organisms. E.g. humans: trillions of cells.
- **Protozoa**: unicellular organisms. E.g. yeast, bacteria.
Cells

• Each cell contains a complete copy of an organism’s genome, or blueprint for all cellular structures and activities.

• Cells are of many different types (e.g. blood, skin, nerve cells), but all can be traced back to a single cell, the fertilized egg.
Cell composition

• 90% water.
• Of the remaining molecules, dry weight
 – 50% protein
 – 15% carbohydrate
 – 15% nucleic acid
 – 10% lipid
 – 10% miscellaneous.
• By element: 60% H, 25% O, 12%C, 5%N.
The genome

• The genome is distributed along chromosomes, which are made of compressed and entwined DNA.

• A (protein-coding) gene is a segment of chromosomal DNA that directs the synthesis of a protein.
The human genome

• The human genome is distributed along 23 pairs of chromosomes
 – 22 autosomal pairs;
 – the sex chromosome pair, XX for females and XY for males.
• In each pair, one chromosome is paternally inherited, the other maternally inherited (cf. meiosis).
Chromosome banding patterns
Of mice and men

Mouse chromosomes

Human chromosomes

Courtesy Lisa Stubbs
Oak Ridge National Laboratory
Chromosomes and DNA
DNA structure

“We wish to suggest a structure for the salt of deoxyribose nucleic acid (D.N.A.). This structure has novel features which are of considerable biological interest.”

DNA structure

• A deoxyribonucleic acid or DNA molecule is a double-stranded polymer composed of four basic molecular units called nucleotides.

• Each nucleotide comprises
 – a phosphate group;
 – a deoxyribose sugar;
 – one of four nitrogen bases:
 • purines: adenine (A) and guanine (G),
 • pyrimidines: cytosine (C) and thymine (T).
DNA structure
DNA structure
Nucleotide bases

Purines
- Adenine (A)
- Guanine (G)

Pyrimidines
- Thymine (T) (DNA)
- Cytosine (C)
- Uracil (U) (RNA)
DNA structure

- Polynucleotide chains are directional molecules, with slightly different structures marking the two ends of the chains, the so-called 3' end and 5' end.
- The 3' and 5' notation refers to the numbering of carbon atoms in the sugar ring.
- The 3' end carries a sugar group and the 5' end carries a phosphate group.
- The two complementary strands of DNA are antiparallel (i.e., 5' end to 3' end directions for each strand are opposite)
The human genome in numbers

- 23 pairs of chromosomes;
- 2 meters of DNA;
- 3,000,000,000 bp;
- 35 M (males 27M, females 44M);
- 30,000-40,000 genes.
DNA replication

“It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.”

DNA replication

Three possible models

- Conservative replication
- Dispersive replication
- Semiconservative replication
DNA replication

Semiconservative replication

Original DNA Helix

DNA helixes after one round of replication
DNA replication

- In the replication of a double-stranded or duplex DNA molecule, both parental (i.e. original) DNA strands are copied.
- The parental DNA strand that is copied to form a new strand is called a template.
- When copying is finished, the two new duplexes each consist of one of the original strands plus its complementary copy - semiconservative replication.
DNA replication

Base pairing provides the mechanism for DNA replication.
DNA replication

- Many enzymes are required to unwind the double helix and to synthesize a new strand of DNA.
- The unwound helix, with each strand being synthesized into a new double helix, is called the replication fork.
- DNA synthesis occurs in the 5' → 3' direction.
DNA replication

Collaboration of Proteins at the Replication Fork
DNA replication

Replication fork grows...

Most recently synthesized DNA

...and grows Okazaki fragments
Enzymes in DNA replication

1. **Topoisomerase**: removes supercoils and initiates duplex unwinding.
2. **Helicase**: unwinds duplex.
3. **DNA polymerase**: synthesizes the new DNA strand; also performs proofreading.
4. **Primase**: attaches small RNA primer to single-stranded DNA to act as a substitute 3' OH for DNA polymerase to begin synthesizing from.
5. **Ligase**: catalyzes the formation of phosphodiester bonds.
6. **Single-stranded binding proteins**: maintain the stability of the replication fork.
Proteins
Proteins

- **Proteins**: large molecules composed of one or more chains of amino acids, *polypeptides*.
- **Amino acids**: class of 20 different organic compounds containing a basic amino group (-NH$_2$) and an acidic carboxyl group (-COOH).
- The order of the amino acids is determined by the **base sequence** of nucleotides in the **gene** coding for the protein.
- E.g. hormones, enzymes, antibodies.
Amino acids

![Amino acid structure diagram]
Amino acids with hydrophobic side groups

Valine (val)
Leucine (leu)
Isoleucine (ile)
Methionine (met)
Phenylalanine (phe)

Amino acids with hydrophilic side groups

Asparagine (asn)
Glutamic acid (gla)
Glutamine (gln)
Histidine (his)
Lysine (lys)
Arginine (arg)

Amino acids that are in between

Glycine (gly)
Alanine (ala)
Serine (ser)
Threonine (thr)
Tyrosine (tyr)
Tryptophan (trp)

Cysteine (cys)
Proline (pro)
Amino acids

- **Families of Amino Acids**
- **Basic Side Chains**
- **Acidic Side Chains**
- **Nonpolar Side Chains**
- **Optical Isomers**
- **Peptide Bonds**
- **Uncharged Polar Side Chains**

Acidic Side Chains
- Aspartic acid
- Glutamic acid

Nonpolar Side Chains
- Alanine
- Valine
- Isoleucine
- Leucine

Optical Isomers

Peptide Bonds

Uncharged Polar Side Chains
- Serine
- Threonine
- Tyrosine
- Glycine
- Cysteine

Peptide Bond

- The four atoms in each gray box form a rigid planar unit.

The Amino Acid

- The general formula of an amino acid is R is one of 20 different side chains.
- At pH 7 both the amino and carboxyl groups are ionized.

Amino Acids are commonly joined together by an amide linkage, called a peptide bond.

- Peptide bond: The four atoms in each gray box form a rigid planar unit.
- There is no rotation around the C-N bond.

- Peptide bonds are long polymers of amino acids linked by peptide bonds, and they are always written with the nitrogen atom toward the left. The sequence of this polypeptide is histidine-lysine-valine.
Proteins

Amino Acids

Primary protein structure is sequence of a chain of amino acids

Amino group

\[\text{NH}_2 \]

\[\text{H} - \text{C} - \text{COOH} \]

Acidic carboxyl group

R group

Amino Acid

Pho, Leu, Ser, Cys
Proteins

Primary protein structure
is sequence of a chain of amino acids

Amino Acids

Secondary protein structure
occurs when the sequence of amino acids are linked by hydrogen bonds

Pleated sheet
Alpha helix

Tertiary protein structure
occurs when certain attractions are present between alpha helices and pleated sheets.

Pleated sheet
Alpha helix

Quaternary protein structure
is a protein consisting of more than one amino acid chain.
Cell types
Differential expression

• Each cell contains a complete copy of the organism's genome.
• Cells are of many different types and states E.g. blood, nerve, and skin cells, dividing cells, cancerous cells, etc.
• What makes the cells different?
• **Differential gene expression**, i.e., *when, where*, and *how much* each gene is expressed.
• On average, 40% of our genes are expressed at any given time.
Central dogma

DNA → transcription → RNA → translation → protein
Central dogma

The expression of the genetic information stored in the DNA molecule occurs in two stages:

– (i) transcription, during which DNA is transcribed into mRNA;
– (ii) translation, during which mRNA is translated to produce a protein.

DNA \rightarrow mRNA \rightarrow protein

Other important aspects of regulation: methylation, alternative splicing, etc.
Central dogma

The Central Dogma of Molecular Biology
RNA

• A ribonucleic acid or RNA molecule is a nucleic acid similar to DNA, but
 – single-stranded;
 – ribose sugar rather than deoxyribose sugar;
 – uracil (U) replaces thymine (T) as one of the bases.

• RNA plays an important role in protein synthesis and other chemical activities of the cell.

• Several classes of RNA molecules, including messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), and other small RNAs.
The genetic code

- **DNA**: sequence of four different nucleotides.
- **Proteins**: sequence of twenty different amino acids.
- The correspondence between DNA's four-letter alphabet and a protein's twenty-letter alphabet is specified by the genetic code, which relates nucleotide triplets or codons to amino acids.
The genetic code

Start codon: initiation of translation (AUG, Met).

Stop codons: termination of translation.

Mapping between codons and amino acids is many-to-one: 64 codons but only 20 a.a..

Third base in codon is often redundant, e.g., stop codons.
Protein synthesis

1. Transcription
- DNA
- mRNA
- RNA polymerase
- RNA nucleotides
- Nuclear membrane

2. Translation
- tRNA
- rRNA
- Amino acids
- Anticodon
- Protein synthesis
- Ribosome
- Codon
- Polypeptide chain
Transcription

• Analogous to DNA replication: several steps and many enzymes.

• **RNA polymerase** synthesizes an RNA strand complementary to one of the two DNA strands.

• The RNA polymerase recruits **rNTPs** (ribonucleotide triphosphate) in the same way that DNA polymerase recruits dNTPs (deoxynucleotide triphosphate).

• However, synthesis is **single stranded** and only proceeds in the 5’ to 3’ direction of mRNA (no Okazaki fragments).
Transcription

- The strand being transcribed is called the **template** or **antisense** strand; it contains **anticodons**.

- The other strand is called the **sense** or **coding** strand; it contains **codons**.

- The RNA strand newly synthesized from and complementary to the template contains the same information as the coding strand.
Transcription

5’ ...ATGGCCTGGGACTTCA... 3’
3’ ...TACGGGACCTGGAT... 5’

Sense strand of DNA
Antisense strand of DNA

Transcription of antisense strand

5’ ...AUGGCCCUGGACAUCUCA... 3’ mRNA

Translation of mRNA

Met – Ala – Trp – Thr – Ser – Peptide
Transcription

• **Promoter.** Unidirectional sequence upstream of the coding region (i.e., at 5' end on sense strand) that tells the RNA polymerase both where to start and on which strand to continue synthesis. E.g. TATA box.

• **Terminator.** Regulatory DNA region signaling end of transcription, at 3' end.

• **Transcription factor.** A protein needed to initiate the transcription of a gene, binds either to specific DNA sequences (e.g. promoters) or to other transcription factors.
Transcription

Figure 9.2 Overview: a transcription unit is a sequence of DNA transcribed into a single RNA, starting at the promoter and ending at the terminator.
Exons and introns

• Genes comprise only about 2% of the human genome.
• The rest consists of non-coding regions
 – chromosomal structural integrity,
 – cell division (e.g. centromere)
 – regulatory regions: regulating when, where, and in what quantity proteins are made.
• The terms exon and intron refer to coding (translated into a protein) and non-coding DNA, respectively.
Exons and introns
Splicing
Translation

- **Ribosome**:
 - cellular factory responsible for protein synthesis;
 - a large subunit and a small subunit;
 - structural RNA and about 80 different proteins.

- **transfer RNA (tRNA)**:
 - adaptor molecule, between mRNA and protein;
 - specific *anticodon* and *acceptor site*;
 - specific *charger protein*, can only bind to that particular tRNA and attach the correct amino acid to the acceptor site.
Translation

• Initiation
 – Start codon AUG, which codes for methionine, Met.
 – Not every protein necessarily starts with methionine. Often this first amino acid will be removed in post-translational processing of the protein.

• Termination:
 – stop codon (UAA, UAG, UGA),
 – ribosome breaks into its large and small subunits, releasing the new protein and the mRNA.
Translation

Initiation
30S subunit on mRNA binding site is joined by 50S subunit and aminoacyl-tRNA binds

Elongation
Ribosome moves along mRNA and length of protein chain extends by transfer from peptidyl-tRNA to aminoacyl-tRNA

Termination
Polypeptide chain is released from tRNA, and ribosome dissociates from mRNA
tRNA

- The tRNA has an **anticodon** on its mRNA-binding end that is complementary to the codon on the mRNA.
- Each tRNA only binds the appropriate amino acid for its anticodon.
Alternative splicing

• There are more than 1,000,000 different human antibodies. How is this possible with only ~30,000 genes?
• **Alternative splicing** refers to the different ways of combining a gene’s exons. This can produce different forms of a protein for the same gene.
• Alternative pre-mRNA splicing is an important mechanism for regulating gene expression in higher eukaryotes.
• E.g. in humans, it is estimated that approximately 30% of the genes are subject to alternative splicing.
Alternative splicing

Primary isoform

Cryptic exon

Exon extension (5' or 3')

Exon skipping

Exon truncation
Immunoglobulin

- B cells produce antibody molecules called immunoglobulins (Ig) which fall in five broad classes.

- Diversity of Ig molecules
 - DNA sequence: recombination, mutation.
 - mRNA sequence: alternative splicing.
 - Protein structure: post-translational proteolysis, glycosylation.
Post-translational processing

• Folding.
• Cleavage by a proteolytic (protein-cutting) enzyme.
• Alteration of amino acid residues
 – phosphorylation, e.g. of a tyrosine residue.
 – glycosylation, carbohydrates covalently attached to asparagine residue.
 – methylation, e.g. of arginine.
• Lipid conjugation.
Transcription and translation

DNA → transcription → mRNA → translation → Protein

Organism

Regulatory network
Control of Gene Expression

• there is strong evidence that the DNA content of most cells in a multi-cell organism is identical
• different cell types synthesize different sets of proteins at different times
Gene expression
Control of Gene Expression

• there are at least six ways to control protein expression
 1. control when and how often a gene is transcribed
 2. control how the transcript is spliced
 3. select which mRNA's are exported from the nucleus
 4. control translation
Controlling Expression

5. selectively destabilize mRNAs in the cytoplasm
6. control protein activity (degradation, inactivate, isolate), post-translational modifications

• for most genes transcriptional control is the most important
Gene Expression

• for many diseases specific patterns of gene expression (mRNA expression) have been associated with the different phenotypes
Different Tumors have different patterns of expression

Fig. from Pomeroy et al. Nature 415 (2002)
DNA Microarrays

• the data obtained from microarray experiments is a measure of the abundance of a nucleic acid
• usually they are used for detecting mRNA levels
• some of the issues mentioned previously can affect the observed abundance of mRNA
Low values of mRNA

- the gene may be deleted
- the gene may be being repressed
- the gene may no longer be enhanced
- the gene may be methylated
- the mRNA may be kept in the nucleus
High Levels of mRNA

- the gene may be part of an amplicon
- the gene may no longer be being repressed
- the gene may be being enhanced
Other Issues

• was the right sequence applied to the chip?
• alternative splicing: which one are we measuring?
• cross-hybridization – genes with similar sequences may hybridize
An example of the interactions between some genes (adapted from Wagner 2001)
Downstream Consequences

- many genes fall into the class of genes called **transcription factors**
- while most genes are transcribed by RNA polymerase II it cannot initiate transcription itself in eukaryotic cells
- transcription factors identify and then bind to specific sites in the DNA
- the TFs then guide and activate RNA polymerase
Downstream Consequences

- TFs tend not to be specific for one gene
- disregulation (or over or under production) of a TF can have large effects on gene expression
- for example ESR1 (estrogen receptor 1) is a transcription factor
- it affects production of cyclin d1 (CCND1)
Downstream Consequences

• CCND1 forms a complex with CDK4 and/or CDK6
• this complex inactivates the repressor function of pRb (retinoblastoma protein) which regulates cell proliferation
• and so on....
Functional genomics

- The various genome projects have yielded the complete DNA sequences of many organisms.
 - E.g. human, mouse, yeast, fruitfly, etc.
 - Human: 3 billion base-pairs, 30-40 thousand genes.
- Challenge: go from sequence to function, i.e., define the role of each gene and understand how the genome functions as a whole.
Pathways

• The complete genome sequence doesn’t tell us much about how the organism functions as a biological system.

• We need to study how different gene products interact to produce various components.

• Most important activities are not the result of a single molecule but depend on the coordinated effects of multiple molecules.
TGF-β pathway

• Transforming Growth Factor beta, TGF-β, plays an essential role in the control of development and morphogenesis in multicellular organisms.

• The basic pathway provides a simple route for signals to pass from the extracellular environment to the nucleus, involving only four types of molecules.
TGF-β pathway

Four types of molecules
• TGF-β
• TGF-β type I receptors
• TGF-β type II receptors
• SMADS, a family of signal transducers and transcriptional activators.
TGF-β pathway
TGF-β pathway

• Extracellular TGF–β ligands transmit their signals to the cell's interior by binding to type II receptors, which form heterodimers with type I receptors.

• The receptors in turn activate the SMAD transcription factors.
TGF-\(\beta\) pathway

- Phosphorylated and receptor-activated SMADs (R-SMADs) form heterodimers with common SMADs (co-SMADs) and translocate to the nucleus.

- In the nucleus, SMADs activate or inhibit the transcription of target genes, in collaboration with other factors.
Pathways

• http://www.grt.kyushu-u.ac.jp/spad/

• There are many open questions regarding the relationship between gene expression levels (e.g. mRNA levels) and pathways.

• It is not clear to what extent microarray gene expression data will be informative.
WWW resources

- Access Excellence
 http://www.accessexcellence.com/AB/GG/
- Genes VII
 http://www.oup.co.uk/best.textbooks/biochemistry/genesvii/
- Human Genome Project Education Resources
 http://www.ornl.gov/hgmis/education/education.html
- Kimball’s Biology Pages
 http://www.ultranet.com/~jkimball/BiologyPages/
- MIT Biology Hypertextbook