
Lab: Using R and Bioconductor

Robert Gentleman
Wolfgang Huber

Paul Murrell

June 7, 2004

Introduction

In this lab we will cover some basic uses of R and also begin working with some of the
Bioconductor data sets and tools. Topics covered include basic use of R, R graphics, working
with environments as hash tables.

Some Basic R

First load the Biobase package and then the data set eset.

> library("Biobase")

Welcome to Bioconductor

Vignettes contain introductory material. To view,

simply type: openVignette()

For details on reading vignettes, see

the openVignette help page.

> data(eset)

> eset

Expression Set (exprSet) with

500 genes

26 samples

phenoData object with 3 variables and 26 cases

varLabels

cov1: Covariate 1; 2 levels

cov2: Covariate 2; 2 levels

cov3: Covariate 3; 3 levels

1



The expression set is an S4 class and eset is an instance of this class. You can get help (a
description of the class) by using the ? operator; class?exprSet.

> class(eset)

[1] "exprSet"

> slotNames(eset)

[1] "exprs" "se.exprs" "phenoData" "description" "annotation"

[6] "notes"

> eset$cov1

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

> eset[1, ]

Expression Set (exprSet) with

1 genes

26 samples

phenoData object with 3 variables and 26 cases

varLabels

cov1: Covariate 1; 2 levels

cov2: Covariate 2; 2 levels

cov3: Covariate 3; 3 levels

> eset[, 1]

Expression Set (exprSet) with

500 genes

1 samples

phenoData object with 3 variables and 1 cases

varLabels

cov1: Covariate 1; 2 levels

cov2: Covariate 2; 2 levels

cov3: Covariate 3; 3 levels

You can extract the values in the slots using the @ operator, or in many cases accessor
functions are available. The names of the slots can be obtained using slotNames, as shown
above. Extract the values for some of the named slots.

Exercise 1
What happens when we subset eset? What kind of an object do we get? What happened
to the phenotypic data? What happened to the expression data? Subset eset by selecting
all elements for which cov1 has value 1.

2



Environments

In R an environment is a set of symbol-value pairs. These are very similar to lists, but there
is no natural ordering of values and you cannot make use of numeric indices. Otherwise they
behave the same way.
We first create an environment and then add, remove, list etc.

> e1 = new.env(hash = TRUE)

> e1$a = rnorm(10)

> e1$b = runif(20)

> ls(e1)

[1] "a" "b"

> xx = as.list(e1)

> names(xx)

[1] "a" "b"

Exercise 2
• Create an environment and put a copy of eset into it.

• Fit a linear model to the data x=1:10, y=2*xrnorm(10, sd=0.25)+, and also place this
into your environment.

• Write a function, myExtract, that takes an environment as an argument and returns a
list, one element is the variable cov2 from eset and the other is the vector of coefficients
from the linear model.

Something Harder

Later we will spend some time discussing machine learning (ML), but here we will just use
one simple algorithm, k-nearest neighbors (knn) to make predictions. You should read the
R manual page for a description of knn.

> library("class")

> apropos("knn")

[1] "knn" "knn.cv" "knn1"

The knn algorithm predicts the class of a given observation (the test case) according to a
majority vote of the k nearest neighbors in the training set. We will show how you can use
this to predict the class of sample 1, given data on samples 2 through 26.

3



> exprsEset = exprs(eset)

> classEset = eset$cov2

> esub = eset[, -1]

> pred1 = knn(t(exprs(esub)), exprs(eset)[, 1], esub$cov2)

> classEset[1]

[1] 1

Exercise 3
• Write a function, that takes an exprSet as its input and carries out a leave-one-out set

of predictions.

• Your function should return the vector of predicted values for the given covariate.

• Modify your function to allow the user to specify some of the parameters for knn, such
as k.

The apply functions

In R a great deal of work is done by applying some function to all elements of a list, matrix
or array. There are several functions available for you to use, apply, lapply, sapply are the
most commonly used. From the next release of R onwards there will also be an eapply for
use with environments.
To get some understanding of the apply functions we will attempt to extract some information
from the Gene Ontology information that is supplied with each data package.
This next code chunk shows how to use apply to extract all the molecular function GO terms
for each Affymetrix probe set.

> library("GO")

> library("hgu95av2")

> affyGO = as.list(hgu95av2GO)

> affyMF = lapply(affyGO, function(x) {

+ onts = sapply(x, function(z) z$Ontology)

+ if (is.null(onts) || is.na(onts))

+ NA

+ else unique(names(onts)[onts == "MF"])

+ })

Exercise 4
• How are the GO terms stored? What information is available for each?

• What are the evidence codes and what do they mean?

• Turn this code into a function that would allow users to obtain either the MF, BP or
CC data.

• Extend this function to allow the user to include only given evidence codes. (Or if you
think it better - to exclude specific codes).

4



Graphics

In this section you will work through some examples that allow you to create very general
plots in R.
Given the following data produce a plot that looks like the one in Figure 1. The relevant
features are the tick marks on the y-axis and the vertical positioning of the data symbols.

● ● ● ● ●

● ● ● ● ●

x1

y1

2 4 6 8 10

A
B

Figure 1: Figure for Graphics Question 1.

The following data represent a value recorded regularly over time (e.g., television viewing
gures). The variable v contains the raw values, and mean.8 contains “moving average”values
(for week i, the moving average is average of weeks i− 7, i− 6, . . . , i).

> v <- rnorm(20) + 4

> mean.8 <- rep(0, length(v) - 7)

> for (i in 1:length(mean.8)) mean.8[i] <- mean(v[i:(i + 7)])

5



Week Number

N
um

be
r 

of
 V

ie
w

er
s

0
1

2
3

4 ●
● ● ●

●
● ● ● ●

● ●
● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 2: Figure for Graphics Question 2.

Now, let us try for something that is related to bioinformatics. We first find out which genes
are located in which chromosomes.

> whCHR = unlist(mget(geneNames(eset), hgu95av2CHR))

> table(whCHR)

whCHR

1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 3 4 5 6 7 8 9 X Y

34 14 18 32 12 14 7 13 18 4 22 27 4 4 13 15 16 10 33 21 22 12 20 7

> max(table(whCHR))

[1] 34

6



We can see how many genes from each chromosome are included in our data set. We want to
plot these data, basically creating plots similar to those in geneplotter, such as alongChrom.

> library("geneplotter")

Exercise 5
• Select a chromosome (any one) to produce your plot.

• Find out the length of this chromosome (in bases). [Hint: the necessary data is in
hgu95av2.]

• Find the position for each gene, on your selected chromosome. [Hint: hgu95av2CHRLOC]

• Create a plot with a single horizontal line and add a tick mark for each gene (perpen-
dicular to the horizontal line).

• Can you color the tick marks according to gene expression?

7


