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1 Introduction

Limma is a package for differential expression analysis of data arising from mi-
croarray experiments. The package is designed to analyze complex experiments
involving comparisons between many RNA targets simultaneously while remain-
ing reasonably easy to use for simple experiments. The central idea is to fit a
linear model to the expression data for each gene. The expression data can
be log-ratios, or sometimes log-intensities, from two color microarrays or log-
intensity values from one channel technologies such as Affymetrix�. Empirical
Bayes and other shrinkage methods are used to borrow information across genes
making the analyses stable even for experiments with small number of arrays
[1, 2].

Limma is designed to be used in conjunction with the affy or affyPLM pack-
ages for Affymetrix� data. With two color microarray data, the marray package
may be used for pre-processing. Limma itself also provides input and normaliza-
tion functions which support features especially useful for the linear modeling
approach.

2 Data Representations

The starting point for this chapter and many other chapters in this book is that
an experiment has been performed using a set of microarrays hybridized with
two or more different RNA sources. The arrays have been scanned and image-
analyzed to produce output files containing raw intensities, usually one file for
each array. The arrays may be one-channel with one RNA sample hybridized
to each array or they may be two-channel or two-color with two RNA samples
hybridized competitively to each array.

Expression data from experiments using one-channel arrays can be repre-
sented as a data matrix with rows corresponding to probes and columns to
arrays. The rma() function in the affy package produces such a matrix for
Affymetrix� arrays. The output from rma() is an exprSet object with the ma-
trix of log-intensities in the exprs slot.

Experiments using two-color arrays produce two data matrices, one each for
the green and red channels. The green and red channel intensities are usually
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kept separate until normalization, after which they are summarized by a matrix
of log-ratios (M -values) and a matrix of log-averages (A-values).

Two-color experiments can be divided into those for which one channel of
every array is a common reference sample and those which make direct com-
parisons between the RNA samples of interest without the intermediary of a
common reference. Common reference experiments can be treated similarly to
one-channel experiments with the matrix of log-ratios taking the place of the ma-
trix of log-intensities. Direct two-color designs require some special techniques.
Many features of limma are motivated by the desire to obtain full information
from direct designs and to treat all types of experiment in a unified way.

When discussing linear models, we will assume that a normalized data object
called MA or eset is available. The object eset is assumed to be of class exprSet
containing normalized probe-set log-intensities from an Affymetrix� experiment
while MA is assumed to contain normalized M and A-values from an experiment
using two-color arrays. The data object MA might be an marrayNorm object
produced by maNorm() in the marray package or an MAList object produced
by normalizeWithinArrays() or normalizeBetweenArrays() in the limma pack-
age, although marrayNorm objects usually need some further processing after
normalization before being used for linear modeling.

Apart from the expression data itself, microarray data sets need to include
information about the probes printed on the arrays and information about the
targets hybridized to the arrays. The targets are of particular interest when
setting up a linear model. In this chapter the target labels and any associated
covariates are assumed to be available in a targets frame called targets, which
is just a data.frame with rows corresponding to arrays in the experiment. In an
exprSet object this data frame is often stored as part of the phenoData slot, in
which case it can be extracted by targets <- pData(eset). Despite the name,
there is no implication that the covariates are phenotypic in nature, in fact they
often indicate genotypes such as wild-type or knockout. In an marrayNorm
object the targets frame is often stored as part of the maTargets slot, in which
case it can be extracted by targets <- maInfo(maTargets(MA)). Limma provides
the function readTargets() for reading the targets frame directly from a text
file, and doing so is often the first step in a microarray data analysis.

3 Linear Models

Limma uses linear models to analyze designed microarray experiments [3, 1].
This approach allows very general experiments to be analyzed nearly as easily
as a simple replicated experiment. The approach requires two matrices to be
specified. The first is the design matrix which provides a representation of the
different RNA targets which have been hybridized to the arrays. The second is
the contrast matrix which allows the coefficients defined by the design matrix
to be combined into contrasts of interest. Each contrast corresponds to a com-
parison of interest between the RNA targets. For very simple experiments the
contrast matrix may not need to be specified explicitly.
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The first step is to fit a linear model using lmFit() which fully models the
systematic part of the data. Each row of the design matrix corresponds to an
array in the experiment and each column corresponds to a coefficient. With
one-channel data or common reference data, the number of coefficients will be
equal to the number of distinct RNA sources. With direct-design two-color
data there will be one fewer coefficient than distinct RNA targets, or the same
number if a dye-effect is included. One purpose of this step is to estimate the
variability in the data.

In practice one might be interested in more or fewer comparisons between
the RNA targets than there are coefficients. The contrast step, which uses the
function contrasts.fit(), allows the fitted coefficients to be compared in as
many ways as there are questions to be answered, regardless of how many or
how few these might be.

Mathematically we assume a linear model E[yj ] = Xαj where yj contains
the expression data for the gene j, X is the design matrix and αj is a vector of
coefficients. Here yT

j is the jth row of the expression matrix and contains either
log-ratios or log-intensities. The contrasts of interest are given by βj = CT αj

where C is the contrasts matrix. The coefficients component of the fitted
model produced by lmFit() contains estimated values for the αj . After applying
contrasts.fit(), the coefficients component now contains estimated values for
the βj .

With one-channel or common reference microarray data, linear modeling is
much the same as ordinary ANOVA or multiple regression except that a model
is fitted for every gene. With data of this type, design matrices can be created in
the same way that one would do when modeling univariate data. With data from
two-color direct designs, linear modeling is very flexible and powerful but the
formation of the design matrix may be less familiar. The function modelMatrix()

is provided to simplify the construction of appropriate design matrices for two-
color data.

4 Statistics for Differential Expression

Limma provides functions topTable() and decideTests() which summarize the
results of the linear model, perform hypothesis tests and adjust the p-values for
multiple testing. Results include (log) fold changes, standard errors, t-statistics
and p-values. The basic statistic used for significance analysis is the moderated
t-statistic, which is computed for each probe and for each contrast. This has the
same interpretation as an ordinary t-statistic except that the standard errors
have been moderated across genes, i.e., shrunk towards a common value, using
a simple Bayesian model. This has the effect of borrowing information from the
ensemble of genes to aid with inference about each individual gene [1]. Moder-
ated t-statistics lead to p-values in the same way that ordinary t-statistics do
except that the degrees of freedom are increased, reflecting the greater reliability
associated with the smoothed standard errors.

A number of summary statistics are presented by topTable() for the top
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genes and the selected contrast. The M -value (M) is the value of the contrast.
Usually this represents a log2-fold change between two or more experimental
conditions although sometimes it represents a log2-expression level. The A-
value (A) is the average log2-expression level for that gene across all the arrays
and channels in the experiment. Column t is the moderated t-statistic. Column
p-value is the associated p-value after adjustment for multiple testing. The most
popular form of adjustment is "fdr" which is Benjamini and Hochberg’s method
to control the false discovery rate [4]. The meaning of "fdr" adjusted p-values
is as follows. If all genes with p-value below a threshold, say 0.05, are selected
as differentially expressed, then the expected proportion of false discoveries in
the selected group is controled to be less than the theshold value, in this case
5%.

The B-statistic (lods or B) is the log-odds that the gene is differentially
expressed [1, Section 5]. Suppose for example that B = 1.5. The odds of
differential expression is exp(1.5)=4.48, i.e, about four and a half to one. The
probability that the gene is differentially expressed is 4.48/(1+4.48)=0.82, i.e.,
the probability is about 82% that this gene is differentially expressed. A B-
statistic of zero corresponds to a 50-50 chance that the gene is differentially
expressed. The B-statistic is automatically adjusted for multiple testing by
assuming that 1% of the genes, or some other percentage specified by the user
in the call to eBayes(), are expected to be differentially expressed. The p-values
and B-statistics will normally rank genes in the same order. In fact, if the data
contains no missing values or quality weights, then the order will be precisely
the same.

As with all model-based methods, the p-values depend on normality and
other mathematical assumptions which are never exactly true for microarray
data. It has been argued that the p-values are useful for ranking genes even
in the presence of large deviations from the assumptions [5, 2]. Benjamini and
Hochberg’s control of the false discovery rate assumes independence between
genes, although Reiner et al [6] have argued that it works for many forms of
dependence as well. The B-statistic probabilities depend on the same assump-
tions but require in addition a prior guess for the proportion of differentially
expressed genes. The p-values may be preferred to the B-statistics because they
do not require this prior knowledge.

The eBayes() function computes one more useful statistic. The moderated
F -statistic (F) combines the t-statistics for all the contrasts into an overall test
of significance for that gene. The F -statistic tests whether any of the contrasts
are non-zero for that gene, i.e., whether that gene is differentially expressed on
any contrast. The denominator degrees of freedom is the same as that of the
moderated-t. Its p-value is stored as fit$F.p.value. It is similar to the ordinary
F -statistic from analysis of variance except that the denominator mean squares
are moderated across genes.
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5 Fitted Model Objects

The output from lmFit() is an object of class MArrayLM . This section gives
some mathematical details describing what is contained in such objects, follow-
ing on from the Section 3. This section can be skipped by readers not interested
in such details.

The linear model for gene j has residual variance σ2
j with sample value s2

j and
degrees of freedom fj . The output from lmFit(), fit say, holds the sj in com-
ponent fit$sigma and the fj in fit$df.residual. The covariance matrix of the
estimated β̂j is σ2

jC
T (XT VjX)−1C where Vj is a weight matrix determined by

prior weights, any covariance terms introduced by correlation structure and any
iterative weights introduced by robust estimation. The square-roots of the diag-
onal elements of CT (XT VjX)−1C are called unscaled standard deviations and
are stored in fit$stdev.unscaled. The ordinary t-statistic for the kth contrast
for gene j is tjk = β̂jk/(ujksj) where ujk is the unscaled standard deviation.
The ordinary t-statistics can be recovered by

> tstat.ord <- fit$coef/fit$stdev.unscaled/fit$sigma

after fitting a linear model if desired.
The empirical Bayes method assumes an inverse Chisquare prior for the σ2

j

with mean s2
0 and degrees of freedom f0. The posterior values for the residual

variances are given by

s̃2
j =

f0s
2
0 + fjs

2
j

f0 + fj

where fj is the residual degrees of freedom for the jth gene. The output from
eBayes() contains s2

0 and f0 as fit$s2.prior and fit$df.prior and the s̃2
j as

fit$s2.post. The moderated t-statistic is

t̃jk =
β̂jk

ujks̃j

This can be shown to follow a t-distribution on f0 + fj degrees of freedom if
βjk = 0 [1]. The extra degrees of freedom f0 represent the extra information
which is borrowed from the ensemble of genes for inference about each individual
gene. The output from eBayes() contains the t̃jk as fit$t with corresponding
p-values in fit$p-value.
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