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1 Introduction

Excerpt from the Monograph chapter: Machine learning refers to computational and
statistical inference processes employed to create, on the basis of observational data,
reusable algorithms for prediction. The term machine is introduced to reflect the view
that the creation of the predictive algorithm should occur with minimal human in-
tervention, and the predictions for future observations should occur with no human
intervention. (End excerpt.)

Let X denote a p-dimensional feature space, and let Tn denote a set of n examples
available for inspection. Two basic species of machine learning have evolved.

• In unsupervised learning, Tn is used to identify intrinsic patterns or configurations
of features. The predictive use of this procedure can take various forms. In one
simple approach, future observations are grouped together on the basis of the
patterns discovered in Tn.

Cluster analysis is the primary exemplar of unsupervised machine learning. Many
different clustering algorithms are available in R.

• In supervised learning, each example consists of an element of X associated with
a class label c ∈ C = {1, . . . , C, D, O}, where C is the number of proper classes of
objects about which learning is to be conducted, D is a special class label denoting
‘doubt’ and O is a special class label denoting ‘outlier’. The problem of machine
learning is to use Tn to identify or build a function from X to C that will correctly
classify future objects on the basis of their features.

Many different approaches to supervised machine learning have evolved in the twentieth
century. See the monograph chapter for relevant background references.

2 Prologue on Bioconductor and the R computing

environment

Software implementing machine learning methods is widely available. The Bioconductor
project focuses on the R environment for a variety of reasons – chief among them is the
recognition that many statistical researchers use R to develop, test, and distribute new
inferential tools.

It is important to appreciate the structure of the model fitting framework in R.
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• function/object paradigm: Activities in R primarily take the form of function
evaluation. In R, generically, y=f(x,...) creates an object called y by evaluating
f on input x and other inputs. f must be an R function, but x can be anything,
and y is completely defined by the function f as evaluated on its arguments. There
is no function typing, so the type or class of y may be vary across invocations of f,
depending on the classes and types of arguments and on the specific details of f.
However, all entities definable in R are in certain specific respects self-describing, so
it will generally be possible to interrogate y (and f can interrogate its arguments)
to learn about its structure.

The statistical modeling paradigm in R takes the form of evaluating a function (a
model fitting function) on some objects to create some new object. The new object
can be operated upon by other functions to obtain reports, predictions, figures of
merit, graphics, etc. Certain very common procedures (coded as R generics) such
as summary, plot, residuals, predict are defined by most modeling procedures
to work as R methods on outputs of specific modeling functions.

• data.frame, formula: Given a rectangular data structure in the data.frame

format, a formula specifies (typically up to the value of an (unknown) parameter
vector) relationships among variables defining a model. The formula y ~ x1+x2

specifies that y is the dependent variable and x1 and x2 are predictor variables. In
the classical frameworks of ANOVA, linear regression, and generalized linear mod-
els, the Wilkinson Rogers formalism can be used to specify interactions concisely.
The same syntax can be used to specify elements of neural network models, support
vector machine models, mixed effects models, etc., although additional structures
(e.g., parameter settings or random effects models) are needed to complete the
specification.

• predict: A modeling procedure returns an R object with a particular structure.
It may be a list, it may be a formal object in some object-oriented paradigm
such as S4. In most cases, a predict method is available that will use the fitted
model to produce predictions on new assignments to predictor variables. This
has the form of a “black box” – the user only needs to supply the newdata data
frame instance, and predictions will be made. Note that some modeling tools most
naturally compute predictions in the form of posterior probabilities of events, even
if the dependent variable has a categorical form. Typically a type parameter can
be used to distinguish different prediction formats.

• figures of merit: Most modeling methods optimize some objective function of
the data (e.g., minimize the sum of squared residuals), but estimating predictive
accuracy based on a single optimization on the data at hand is unsound. Cross-
validation refers to a family of procedures of iteratively refitting the model based
on partitions of the data, fitting to one part and predicting on the “left out” part.
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Some machine learning procedures in R have cross-validation built in (e.g., rpart,
svm in e1071), and the MLInterfaces package provides an xval wrapper.

• software brokering: A basic expense encountered in using distributed methods
for machine learning is the requirement to “recode” data in a specific format to
allow execution of the code. This occurs even in R, where various packages and
functions require various types of input. An initiative called PMML (predictive
modeling markup language) pursues a generic markup for specification of models
and exposure of data for fitting. The MLInterfaces package attempts to help users
in bioinformatics in two ways:

– uniform input idiom based on ExpressionSet class

– uniform output idiom based on MLOutput class

These features will be illustrated in the lab

Summary. One can step from a microarray experiment to a machine learning tool,
extracting a matrix of numbers from the experimental output and throwing the matrix
to a software tool that computes a report. This is not the way Bioconductor is supposed
to work, even though some packages allow this pattern. Instead,

• the experimental data should be bound with metadata about the experiment and
about the samples, in the form of an ExpressionSet

• the relationships of interest should be expressible in a formula

• the modeling software tool should be able to

– use the ExpressionSet to obtain the data to be modeled,

– produce an object that facilitates convenient comparison of fits across different
learning procedures

– be used in the context of different approaches to cross validation, including
embedded feature selection

The MLInterfaces system endeavors to support these enhancements to the modeling
patterns available in R.

3 A non-genomic refresher with the crabs data

3.1 Introduction

In this section we review multivariate displays and some aspects of unsupervised learning,
using a demonstration multivariate dataset of modest dimensions.

The MASS package includes a dataset derived from
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Campbell, N.A. and Mahon, R.J. (1974) A multivariate study of

variation in two species of rock crab of genus _Leptograpsus._

_Australian Journal of Zoology_ *22*, 417-425.

Ensure that the MASS package is installed with your installation of R. If library(MASS)
fails, install the package.

To access the crabs data, use

> library(MASS)

> data(crabs)

Then help(crabs) will provide some descriptive information. You can see the first few
records using

> crabs[1:3, ]

sp sex index FL RW CL CW BD

1 B M 1 8.1 6.7 16.1 19.0 7.0

2 B M 2 8.8 7.7 18.1 20.8 7.4

3 B M 3 9.2 7.8 19.0 22.4 7.7

The variables are

• sp, a species code, O for orange, B for blue

• sex, a gender code

• five anatomical measurements recorded in millimeters: FL (frontal lobe width),
RW (rear width), CL (carapace length), CW (carapace width), BD (body depth).

Our basic objectives are to describe the relationships among the anatomic features,
and to understand how anatomical measurements associate with species and gender.

3.2 Workspace management

Use the operating system to start a folder called“crabs1”on your computer. For windows
users it might be C:/crabs1; for others it might be $HOME/crabs1. Assign the absolute
path name of your chosen folder to the variable crabfolder and then use setwd to
relocate R’s operating directory there. For example:

> crabfolder <- "C:/crabs1"

> setwd(crabfolder)

You should save your image and save your history in this directory before shutting down.

5



> boxplot(crabs[, -c(1, 2, 3)])

●

FL RW CL CW BD

10
20

30
40

50

Figure 1: Crab measure univariate distributional summaries.

3.3 Simple graphics

First we would like to assess location and spread of the anatomical measures over the
whole sample. R’s boxplot command takes care of this very simply. We omit the first
three columns for now; see Figure 1.

To assess the correlations among the measures, we use the pairs function. See Figure
2.

Marginal normality of frontal lobe measures can be assessed as in Figure 3.

3.4 Stratified graphics

The lattice package is useful for displaying multivariate data. With the data in its
standard form, we can assess the effect of gender on carapace width within species; see
Figure 4.
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> pairs(crabs[, -c(1, 2, 3)], col = ifelse(crabs$sex == "M", "blue",

+ "gold"), pch = 15)
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Figure 2: Crab measure bivariate scatterplots.

> qqnorm(crabs[, "FL"])
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Figure 3: Crab frontal lobe gaussianity assessment.
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> library(lattice)

> print(bwplot(sex ~ CW | sp, data = crabs, layout = c(1, 2)))
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Figure 4: Stratified carapace width distributional summaries.
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3.5 Altering data structure

Data structure can affect the ease with which stratified graphics are specified. The
structure in use has one record per crab. It is possible to restructure the data with one
record per feature of each crab.

One approach to this is as follows; see figure 5.

> cfeat <- data.matrix(crabs[, -c(1, 2, 3)])

> fvec <- as.numeric(t(cfeat))

> fnames <- factor(rep(names(crabs[, -c(1, 2, 3)]), 200))

> newsp <- rep(crabs$sp, each = 5)

> newcfeat <- data.frame(feat = fnames, val = fvec, sp = newsp)

> newcfeat[1:10, ]

feat val sp

1 FL 8.1 B

2 RW 6.7 B

3 CL 16.1 B

4 CW 19.0 B

5 BD 7.0 B

6 FL 8.8 B

7 RW 7.7 B

8 CL 18.1 B

9 CW 20.8 B

10 BD 7.4 B

> cfeat[1:2, ]

FL RW CL CW BD

1 8.1 6.7 16.1 19.0 7.0

2 8.8 7.7 18.1 20.8 7.4
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> print(bwplot(sp ~ val | feat, data = newcfeat, layout = c(1,

+ 5)))
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Figure 5: Stratified distributional summaries for all measures.
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3.6 Distances

We will confine attention to 40 observations, using

> kpind <- c(1:10, 51:60, 101:110, 151:160)

> kpsp <- crabs$sp[kpind]

> kpsex <- crabs$sex[kpind]

> kfeat <- cfeat[kpind, ]

If x1 and x2 are two points in p-dimensional Euclidean space, the distance between
them, dE(x1, x2), is

dE(x1, x2) =

√√√√ p∑
i=1

(x1i − x2i)2

We can look at the distances among the features:

> dist(t(kfeat))

FL RW CL CW

RW 11.67

CL 73.63 84.57

CW 93.53 104.39 20.09

BD 9.12 5.17 82.45 102.37

A different definition of distance is ‘Canberra’:

dC(x1, x2) =
∑

i

|x1i − x2i|
|x1i + x2i|

We can impose the use of this measure through the following:

> dist(t(kfeat), method = "canberra")

FL RW CL CW

RW 3.27

CL 13.55 16.36

CW 15.79 18.47 2.59

BD 2.76 1.33 15.93 18.05

3.7 Clustering

A variety of clustering methods are available in R. The main stats package includes
hclust, which computes hierarchical clustering trees according to certain agglomeration
criteria, and kmeans, which computes a partition of the feature space into k regions (k
selected by the user). Clusters are defined by inclusion in the regions, and “all cluster
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centres are at the mean of their Voronoi sets (the set of data points which are nearest to
the cluster centre)”[from the man page]. The cluster package includes pam, a partitioning
procedure like kmeans, which constrains the cluster centers to be chosen among actual
feature vectors in the data; geometrically, the centers are “medoids”.

The following code compares and plots (in Figure 6 various approaches to clustering.

> par(mfrow = c(2, 2))

> hc1 <- hclust(dist(kfeat))

> plot(hc1, main = "default hclust")

> hc2 <- hclust(dist(kfeat), method = "single")

> plot(hc2, main = "single linkage")

> hc3 <- hclust(dist(kfeat, method = "canberra"))

> library(cluster)

> hc4 <- pam(dist(kfeat), 4)

> clusplot(hc4)

> plot(silhouette(hc4))

> par(mfrow = c(1, 1))

The final plot is a “silhouette” plot, which displays measures of within-cluster to
between-cluster separation.

For each observation i, the _silhouette width_ s(i) is defined as

follows:

Put a(i) = average dissimilarity between i and all other points

of the cluster to which i belongs (if i is the _only_ observation

in its cluster, s(i) := 0 without further calculations). For all

_other_ clusters C, put d(i,C) = average dissimilarity of i to all

observations of C. The smallest of these d(i,C) is b(i) := min_C

d(i,C), and can be seen as the dissimilarity between i and its

"neighbor" cluster, i.e., the nearest one to which it does _not_

belong. Finally,

s(i) := ( b(i) - a(i) ) / max( a(i), b(i) ).

'silhouette.default()' is now based on C code donated by Romain

Francois (the R version being still available as

'cluster:::silhouette.default.R').

Observations with a large s(i) (almost 1) are very well clustered,

a small s(i) (around 0) means that the observation lies between

two clusters, and observations with a negative s(i) are probably

placed in the wrong cluster.
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Figure 6: Displays of clustering procedures and evaluation using silhouette measures.
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To convert a clustering tree, as created with hclust, into a set of cluster labels, the
cutree function is used.

> c1 <- cutree(hc1, k = 4)

> table(c1)

c1

1 2 3 4

3 17 13 7

> c2 <- cutree(hc2, k = 4)

> table(c1, c2)

c2

c1 1 2 3 4

1 2 0 1 0

2 0 17 0 0

3 0 9 0 4

4 0 0 0 7

Partition-based methods such as pam return a clustering labeling component.

> hc4$clustering

1 2 3 4 5 6 7 8 9 10 51 52 53 54 55 56 57 58 59 60

1 2 2 2 2 3 3 3 3 4 1 2 2 2 2 2 2 3 3 3

101 102 103 104 105 106 107 108 109 110 151 152 153 154 155 156 157 158 159 160

1 2 2 3 3 3 4 4 4 4 3 3 3 4 4 4 4 4 4 4

> table(hc4$clustering, c1)

c1

1 2 3 4

1 3 0 0 0

2 0 12 0 0

3 0 5 8 0

4 0 0 5 7

Two clusterings agree if the cross tabulation of label frequencies as displayed above can
be expressed as a matrix product DP , where D is a diagonal matrix with whole number
entries, and P is a permutation matrix.

In this dataset, we have a way of labeling crabs according to gender and species.

> ss <- paste(as.character(kpsp), as.character(kpsex), sep = "")

> table(ss, hc4$clustering)
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ss 1 2 3 4

BF 1 6 3 0

BM 1 4 4 1

OF 0 0 3 7

OM 1 2 3 4

We see that the agreement between gender-species labeling and clustering returned
by PAM is not very good.

3.8 Principal components

The principal components analysis of a p-dimensional multivariate dataset is a re-
expression of the data so that intrinsic structure (such as separation of groups) may
be exhibited in a simpler space with fewer than p dimensions. Here (Figure 7) we com-
pute the principal components and plot the first two. We use colors to discriminate
species, but in a truly unsupervised context we would have no way of doing this.

> pp <- prcomp(crabs[, -c(1, 2, 3)])

> pp

Standard deviations:

[1] 11.862 1.139 1.000 0.368 0.279

Rotation:

PC1 PC2 PC3 PC4 PC5

FL 0.289 0.323 -0.507 0.734 0.125

RW 0.197 0.865 0.414 -0.148 -0.141

CL 0.599 -0.198 -0.175 -0.144 -0.742

CW 0.662 -0.288 0.491 0.126 0.471

BD 0.284 0.160 -0.547 -0.634 0.439

.
A qualitative interpretation is that most of the variation in the data can be captured

by a weighted sum of features, with most of the weight given to carapace dimensions.
Much of the remaining variability is expressible through the difference between the cara-
pace and non-carapace dimensions.

We can examine a three-dimensional perspective plot of the data, discarding data
on two dimensions (Figure 8); Figure 9 employs the principal components reexpression,
and uses different glyphs for species and gender. .

.
The interpretation is somewhat difficult, but this display has the advantage of being

in the raw units of measurement. There are many decisions to be made regarding angle of
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> plot(pp$x[, 1], pp$x[, 2], col = ifelse(crabs$sp == "O", "orange",

+ "blue"), pch = 16, xlab = "PC.1", ylab = "PC.2")
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Figure 7: Principal components analysis of crab data: first two principal components.

> attach(crabs)

> library(scatterplot3d)

> scatterplot3d(CL, CW, RW, color = ifelse(crabs$sp == "O", "orange",

+ "blue"))
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Figure 8: Three variables in a 3D display.
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> scatterplot3d(pp$x[, 1], pp$x[, 2], pp$x[, 3], color = ifelse(crabs$sp ==

+ "O", "orange", "blue"), pch = ifelse(crabs$sex == "M", 1,

+ 15))
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Figure 9: First 3 PC in a 3D display.

presentation and choice of glyph and shading. Dynamic high-dimensional visualizations
are sometimes valuable; see www.ggobi.org for an open source tool that works with R.

Note the configuration of points in the pairwise display of all principal components,
Figure 10.

Interpret each of the principal components informally. (See Ripley, chapter 9).
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> pairs(pp$x, col = ifelse(crabs$sp == "O", "orange", "blue"),

+ pch = ifelse(crabs$sex == "M", 1, 16))

PC1

−3 −1 1

●
●●●●

● ●● ●●
●●●● ● ●●●●●

●●●●●●●
● ●●

●●●●
●

●●●●
●●●●

●● ●
●●●

●

●

●●●●
●●●●

●●●
●● ●●●●●

●●●●●● ●●●●●●
●●●●●

●●●●●●●
●●●

●
●●

●

●
●●
●●●
●●● ●
●●●●● ●●

● ●●
●● ●●●

●●●●●● ●
●●● ●●
● ●●●

●●
●●
●

● ●
●●

●●
● ●●

●●●
●●●
●●●●●●●●

●
●● ●● ●

●
●●●●

●● ●●●
●●
●● ●● ●●

●

●
●●●●
●

●
●●●●
● ●●● ●

●●● ●●● ●●●●
●●●●●●●

●●●
● ●●●

●
●●●● ●●●●

●● ●
●●●

●

●

●●●●● ●● ●●●●
●●●● ●●●

●● ●●● ●●● ●●● ●
●●●● ●
● ●●● ● ●●

● ●●
●
●●

●

●
●●
●●●

● ●● ●
●●●●●●● ●●●●●●

●●

●●
● ●●

●●
●●●●●

●● ●●
● ●

●●
●

●●
●●

●●
● ●●

● ●●
●●●

● ●●●●●●●
●
●● ●● ●

●
●● ●●

●● ●●●
●●

●●●● ●●●

●
●●●●

●

−1.0 0.0 1.0

●
●●●●

●●
● ●●

●● ● ●●● ●●●●
●● ●●●● ●

● ● ●
●● ●●

●
●● ●●● ●● ●

● ● ●
●● ●

●

●

●●● ●● ●● ●● ●●
●● ●●● ●●
●● ●● ● ●●●●● ● ●

●● ●● ●
● ●●● ●● ●
● ●●

●
●●

●

●
●●
● ●●

● ● ●●
●●●● ●●● ●●●● ●●● ●

●●
●●●●●

●● ●●●
● ●● ●
● ●

● ●
●

● ●
● ●

● ●
●●●

●● ●
●●●

●●●● ●●●● ●
●● ●●●

●
●●●●

●● ●●●
● ●

●●● ●●● ●

●
●●● ●

●

−
30

−
10

10

●
● ●●●

●● ●●●
● ●● ●● ●●● ●●

● ● ●●●●●
● ● ●

●●● ●
●

●● ●● ●●●●

●●●
●●●

●

●

● ●●● ●●●● ●● ●
●●●●● ●●

●●●● ●●●● ●●● ●
●● ● ●●

● ●●●● ●●
●● ●

●
●●

●

●
●●

● ●●
●●●●

● ●● ●● ●●● ●●● ●● ●●

●●
● ●●

● ●
● ●●● ●

●●●●
● ●
●●

●
●●

● ●

●●
●● ●

●● ●
●● ●

●●● ● ● ●● ●●
●●● ●●

●
●● ●●

● ●●● ●
● ●

●● ● ● ●●
●

●
● ●● ●

●

−
3

−
1

1

●
●
●●● ●

●

●

●
●

●
●

●
●

●
●

●
●
●
●

●
●●●
●
●
●

●

●

●
●●
●●

●
●●●●●●

●
●

●

●
●

●

●
●

●

● ●●●●
●●
●●
●
●●●

●

●

●●●●
●
●
●
●
●●

●
●
●●
●
●●●
●●
●

●●
●●
●●
●
●●

●

●●
●

●● ●
●

●
●
●●●

●
●●

●●
●●

●●
●

●●
●●

●
●
●

●●●
●

●●
●
●●
●

●
●

●
●●

●●
●

●●
●●

●●

●

●
●●

●
●●●●

●●
●
●
●
●
●
●●
●●●

●
●

●

●
● ●

●●
●

●

●
●

●

●●
●●
●

●

●

●

●
●

●
●

●

●●●

●

PC2 ●
●

●●●●
●

●

●
●

●
●

●
●

●
●

●
●
●

●
●

●●●
●

●
●

●

●

●
● ●

●●
●

●●●● ●●
●
●

●

●
●

●

●
●

●

● ●●●●
● ●● ●

●
●● ●
●

●

● ●●●
●

●
●
●

● ●

●
●

●●
●

●●●
●●

●
● ●

●●
● ●

●
● ●

●

●●●

●●●
●
●

●
● ● ●

●
●●

●●
●●
●●

●
●●
●●

●
●

●

●●●
●

● ●
●

●●●

●
●

●
● ●

●●
●
●●

● ●

●●

●

●
●●

●
●● ●●

●●
●

●
●

●
●
●●
●●●

●
●

●

●
● ●

●●
●

●

●
●

●

●●
●●

●

●

●

●

●
●
●

●

●

●●●

●

●
●

●●●●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●●

●
●

●
●

●

●
●●

●●
●

●● ●●● ●
●

●
●

●
●

●

●
●

●

●●●● ●
● ●● ●

●
●●●

●

●

●● ●●
●

●
●

●
● ●

●
●
●●

●
●●●

●●
●

● ●
●●

●●
●

● ●

●

●●
●

● ●●
●

●
●

●● ●
●

●●

●●● ●
●●

●
●●

● ●

●
●

●

●● ●
●

●●
●

●●
●

●
●

●
●●

●●
●

● ●
●●

●●

●

●
●●

●
● ●● ●

●●
●

●
●
●

●
●●

●● ●

●
●

●

●
●●

●●
●

●

●
●

●

●●● ●
●

●

●

●

●
●

●
●

●

●● ●

●

●
●

●●● ●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●●

●
●

●
●

●

●
●●

● ●
●

●● ●● ●●
●

●
●

●
●

●

●
●

●

●● ●●●
●●●●

●
● ●●

●

●

●● ●●
●

●
●

●
●●

●
●

●●●
● ●●

● ●
●

● ●
●●

● ●
●

●●

●

● ●
●

●●●
●

●
●

●●●
●

●●

●● ●●
●●

●
●●

● ●

●
●

●

●●●
●

●●
●

● ●●

●
●

●
●●

●●
●

●●
● ●

●●

●

●
● ●

●
● ●● ●

●●
●
●

●
●

●
● ●

● ●●

●
●

●

●
●●

●●
●

●

●
●

●

● ●● ●
●

●

●

●

●
●

●
●

●

●● ●

●

●
●
●
●●

●
●
●
●

●
●
●

●
●●
●
●●●

●
●

●●
●●●●

●
●

●
●

●
●
●

●

●●
●
●

●●

●●

●

●
●

●

●●

●

●

●

●
●
●
●
●
●

●
●
●●

●

●●
●

●

●●

●

●

●●
●
●
●●

●
●
●

●

●
●

●
●
●

●

●

●●
●
●

●

●

●

●

●●
●

●

●
●●●

●●
●

●

●
●●

●●
●●●
●

●

●
●
●●●
●
●

●
●

●
●●

●●
●

●●

●●

●●

●

●
●

●●●
●

●
●

●
●

●

●●

●●
●

●

●

●
●

●

●
●
●●●
●●●●●

●
●

●
●

●

●
●
●

●●
●

●

●●

●
●

●

●

●
●

●●●
●●

●●●

●

●
●

●
●●
●

●
●

●

●
●

●

●
● ●

●
●●●

●
●

●●
●●

●●

●
●

●
●

●
●
●

●

●●
●
●

●●

●●

●

●
●

●

●●

●

●

●

●
●
●

●
●
●

●
●

●●

●

● ●
●

●

●●

●

●

●●
●

●
●●

●
●

●

●

●
●

●
●

●
●

●

●●
●
●

●

●

●

●

●●●
●

●
●●●

●●
●

●

●
●●

●●
●● ●

●

●

●
●

●● ●
●

●

●
●

●
●●

● ●
●

●●

●●

● ●

●

●
●

●●●
●

●
●
●

●

●

●●

●●
●

●

●

●
●

●

●
●

●●●
●●●●●

●
●

●
●

●

●
●

●

● ●
●

●

●●

●
●

●

●

●
●

●●●
● ●

●●●

●

PC3
●
●

●
●●

●
●

●
●

●
●

●

●
●●

●
●●●

●
●

● ●
●●

● ●

●
●

●
●

●
●

●

●

●●
●

●

● ●

● ●

●

●
●

●

● ●

●

●

●

●
●

●
●

●
●

●
●

●●

●

● ●
●

●

●●

●

●

●●
●

●
●●

●
●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●●
●

●

●
●●●

●●
●

●

●
●●

●●
● ●●

●

●

●
●
● ●●

●
●

●
●

●
●●

●●
●

● ●

●●

● ●

●

●
●

●● ●
●

●
●

●
●

●

●●

●●
●

●

●

●
●

●

●
●
●● ●

●●● ●●

●
●

●
●

●

●
●

●

● ●
●

●

●●

●
●

●

●

●
●

●● ●
● ●

●● ●

●

−
2

0
1

2

●
●

●
●●

●
●

●
●

●
●

●

●
●●
●

●● ●

●
●

● ●
●●●●

●
●

●
●

●
●

●

●

●●
●

●

●●

●●

●

●
●

●

●●

●

●

●

●
●

●
●

●
●

●
●

● ●

●

●●
●

●

●●

●

●

●●
●
●

●●

●
●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●

● ●
●

●

●
●●●

●●
●

●

●
●●

●●
●● ●

●

●

●
●

● ●●
●

●

●
●

●
●●

● ●
●

●●

● ●

●●

●

●
●

●●●
●

●
●

●
●

●

● ●

● ●
●

●

●

●
●

●

●
●
● ● ●

●● ●● ●

●
●

●
●

●

●
●

●

●●
●

●

● ●

●
●

●

●

●
●

●●●
● ●

●● ●

●

−
1.

0
0.

0
1.

0

●●
●
●●

●●
●

●

●
●
●

●

●
●
●

●
●
●
●

●

●

●

●
●●
●

●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●●
●

●

●
●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●●
●●

●
●

●

●
●

●●

●

●
●
●

●
●

●

●
●
●

●●●

●●●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●●

●●

●

●

●
●
●

●

●●●
●
●●
●
●
●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●●

●

● ●●
●
●●

● ●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●
●●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●●
●●

●
●

●

●
●

●●

●

●
●

●
●
●

●

●
●

●

●●●

● ●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●
●

●

●

●●●
●

●●
●
●
●

●

●

●

● ●

●

●●

●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●●

●

● ● ●
●

●●

● ●
●

●

●
●

●

●

●
●

●

●
●
●

●
●

●

●

●
●●

●

●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●●
●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

● ●

●●
●●

●
●

●

●
●

●●

●

●
●

●
●

●

●

●
●

●

●●●

●●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●
●

●

●

● ●●
●
●●●
●

●
●

●

●

● ●

●

●●

●●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●
●●

●

● PC4 ●●
●

●●

●●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●

●
●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●
●●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

● ●
● ●

●
●

●

●
●

●●

●

●
●

●
●

●

●

●
●

●

●● ●

●● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●
●

●

●

●●●
●

● ●●
●

●
●

●

●

●●

●

●●

●●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●
●●

●

●

−30 −10 10

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●
●
●

●

●
●
●

●
●

●

●●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●●●

●●
●

●

●

●

●

●

●

●●●
●
●
●

●

●

●

●
●

●●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●
●

●
●

●
●
●

●
●

●

●●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

● ●●

●●
●

●

●

●

●

●

●

● ●●
●

●
●

●

●

●

●
●

● ●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−2 0 1 2

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●
●
●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

● ●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●● ●

●●
●
●

●

●

●

●

●

● ●●
●

●
●

●

●

●

●
●

● ●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●
●

●
●

●
●
●

●
●

●

●●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

● ● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●●

●

●

●

●

●

●

●

● ●●

●●
●

●

●

●

●

●

●

●● ●
●

●
●

●

●

●

●
●

● ●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−0.5 0.5

−
0.

5
0.

5

PC5

Figure 10: All PC.
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3.9 Biplots

Presentation of data on both cases and variables construed as multivariate objects is
accomplished by the biplot function. Here we use all the crabs data in a slightly refor-
matted matrix. We look at the second and third principal components.

> CM <- data.matrix(crabs[, -c(1, 2, 3)])

> rownames(CM) <- as.character(crabs$sp)

> biplot(prcomp(CM), choice = 2:3)

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

PC2

P
C

3

B

B

B
B

B
B

B

B
B

B

B
B

B

B B

B

B B B

B

B

BB
B

B
BB

B
B

B

B

B

B

B

B

BB
B

B

BB

BB

B

B

B

B

B B

B

B

B

B
B
B

B

B
B

B

B
B
B

B

B
B

B

B

BB

B

B

BB
B

B
B

B

B
B

B

B

B
B

B
B

B
B

B

BB

B

B

B

B

B

B

B
B

B
B

O
O OO

OO

O

O

O

OO

O
O

OO O
O

O

O
O

O
O O

O

O

O
O

O

O
O

O O
O

OO

OO

O
O

O

O
O

OOO

O

O
O
O

O

O

O
O

O
O

O

O

O

O

O

O

O

O
OO

O
O OOOO

O

O

O

O

O

O

O

O

O O

O

O

O O

O
O

O

O

O
O

OOO

O
O

OOO

O

−15 −10 −5 0 5 10 15

−
15

−
10

−
5

0
5

10
15

FL

RW

CL

CW

BD

Figure 11: Biplot using PC2 and PC3.
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3.10 Some supervised learning examples

3.10.1 Tree-based model evaluation and tuning

Recursive partitioning (also known as CART, classification and regression trees) is simple
to use in R.

> library(rpart)

> tr1 <- rpart(sp ~ FL + RW + CL + CW + BD, data = crabs)

> tr1

n= 200

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 200 100 B (0.5000 0.5000)

2) FL< 17.4 135 47 B (0.6519 0.3481)

4) CW>=36.2 40 4 B (0.9000 0.1000) *

5) CW< 36.2 95 43 B (0.5474 0.4526)

10) BD< 12.1 62 13 B (0.7903 0.2097)

20) CW>=29.9 21 0 B (1.0000 0.0000) *

21) CW< 29.9 41 13 B (0.6829 0.3171)

42) FL< 12.2 34 6 B (0.8235 0.1765) *

43) FL>=12.2 7 0 O (0.0000 1.0000) *

11) BD>=12.1 33 3 O (0.0909 0.9091) *

3) FL>=17.4 65 12 O (0.1846 0.8154)

6) CW>=44.3 33 12 O (0.3636 0.6364)

12) FL< 19.9 11 0 B (1.0000 0.0000) *

13) FL>=19.9 22 1 O (0.0455 0.9545) *

7) CW< 44.3 32 0 O (0.0000 1.0000) *

Plotting and annotation are straightforward (see Figure 12); a “post” method can be
used for detailed graphics.

An important appraisal tool is the cost-complexity plot. A cross-validation is con-
ducted as part of the model fitting procedure, and estimates of classification error rates
(relative to those obtained by cross-validation with a single node) are summarized as a
function of tree node count.

The parameters by which a tree-fitting procedure are controlled are specified in a
control list:

> unlist(rpart.control())

minsplit minbucket cp maxcompete maxsurrogate

20.00 7.00 0.01 4.00 5.00
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usesurrogate surrogatestyle maxdepth xval

2.00 0.00 30.00 10.00

We can cause the elaboration of the tree using the generic update method, see Figure
14.

> tr2 <- update(tr1, minsplit = 5)
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> plot(tr1)

> text(tr1)

|FL< 17.45

CW>=36.2
BD< 12.15

CW>=29.85
FL< 12.25

CW>=44.35
FL< 19.85

B

B

B O

O

B O

O

Figure 12: Default tree model fit to crabs data.

22



> plotcp(tr1)
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Figure 13: Cost-complexity plot for crabs data.
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> plot(tr2)

> text(tr2)

|FL< 17.45

CW>=36.2
FL< 16.65

CL>=36.15
BD< 12.15

CW>=29.85
FL< 12.25

CW>=25.1
BD< 8.95

CW>=34.6
FL< 15.15

CW>=44.35
FL< 19.85

B
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B
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O
B O

O

B O

O

Figure 14: Elaborated tree model fit to crabs data.
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3.10.2 Neural networks

Single layer feed-forward neural networks are easy to fit.

> library(nnet)

> nn1 <- nnet(sp ~ CL + CW + FL + RW + BD, data = crabs, size = 3)

# weights: 22

initial value 160.265075

iter 10 value 131.082520

iter 20 value 0.058116

iter 30 value 0.000722

final value 0.000001

converged

> nn1

a 5-3-1 network with 22 weights

inputs: CL CW FL RW BD

output(s): sp

options were - entropy fitting

> table(predict(nn1, type = "class"), crabs$sp)

B O

B 100 0

O 0 100

Selection of tuning parameters can be performed using tools in package e1071 .

> library(e1071)

> library(Biobase)

> tnn <- cache("tnn", tune(nnet, sp ~ CL + CW + FL + RW + BD, data = crabs,

+ ranges = list(size = c(2, 3, 4, 5), decay = c(0.001, 0.01,

+ 0.02, 0.03, 0.05))))

> tnn

Parameter tuning of `nnet':

- sampling method: 10-fold cross validation

- best parameters:

size decay

2 0.001

- best performance: 1
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3.11 Some novel procedures

3.11.1 Association rule mining

Consider the tertize function:

> tertize = function(df) data.frame(lapply(df, function(x) cut(x,

+ br = quantile(x, c(0, 0.33, 0.66, 1)), include.lowest = TRUE,

+ labels = c("low", "mid", "hi"))))

> tertize(crabs[, -c(1, 2, 3)])[c(1:2, 20:21, 40:41), ]

FL RW CL CW BD

1 low low low low low

2 low low low low low

20 low low mid mid low

21 mid mid mid mid mid

40 hi mid hi hi hi

41 hi mid hi hi hi

> sapply(tertize(crabs[, -c(1, 2, 3)]), table)

FL RW CL CW BD

low 67 66 67 66 66

mid 65 69 66 66 66

hi 68 65 67 68 68

> tc = tertize(crabs[, -c(1, 2, 3)])

> dtc = data.frame(tc, sp = crabs$sp)

The data frame here has the form of a collection of itemsets, where each crab feature
has a categorical measurement, and the crab species is also provided. This can be used
to obtain a transactional analysis using the apriori algorithm:

> library(arules)

Loading required package: stats4

Loading required package: Matrix

> tdtc = as(dtc, "transactions")

> ap = apriori(tdtc)

parameter specification:

confidence minval smax arem aval originalSupport support minlen maxlen target

0.8 0.1 1 none FALSE TRUE 0.1 1 5 rules

ext

26



FALSE

algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[17 item(s), 200 transaction(s)] done [0.00s].

sorting and recoding items ... [17 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 4 5 done [0.00s].

writing ... [351 rule(s)] done [0.00s].

creating S4 object ... done [0.00s].

> sap = subset(ap, subset = rhs %in% c("sp=O", "sp=B"))

> inspect(sap)

lhs rhs support confidence lift

1 {RW=hi,

BD=hi} => {sp=O} 0.190 0.809 1.62

2 {FL=hi,

RW=hi} => {sp=O} 0.205 0.820 1.64

3 {FL=hi,

RW=hi,

BD=hi} => {sp=O} 0.190 0.809 1.62

The support supp(X) of an itemset X is the proportion of transactions containing the
itemset. The confidence of rule X → Y is conf(X → Y ) = supp(X ∪Y )/supp(X). The
apriori algorithm is an efficient rule search that can identify rules satisfying conditions
on antecedent support and rule confidence. By default, support must exceed .1 and
confidence must exceed .8 to be kept.

3.11.2 Weka

There are a variety of machine learning algorithms collected together in a package called
RWeka. An interface to a tree visualization paradigm based on ATT graphviz is also
available.

> library(RWeka)

Loading required package: rJava

Loading required package: grid
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> zz = J48(sp ~ CW + CL + RW + BD + FL, data = crabs, control = "-R")

> library(party)

Loading required package: survival

Loading required package: splines

Loading required package: modeltools

Loading required package: coin

Loading required package: mvtnorm

Loading required package: zoo

Loading required package: sandwich

Loading required package: strucchange

Attaching package: 'strucchange'

The following object(s) are masked from package:MASS :

SP500

> write_to_dot(zz)

digraph J48Tree {

N0 [label="FL" ]

N0->N1 [label="<= 17.4"]

N1 [label="CW" ]

N1->N2 [label="<= 36.1"]

N2 [label="FL" ]

N2->N3 [label="<= 13.9"]

N3 [label="CW" ]

N3->N4 [label="<= 30.5"]

N4 [label="BD" ]

N4->N5 [label="<= 11"]

N5 [label="B (24.0/5.0)" shape=box style=filled ]

N4->N6 [label="> 11"]

N6 [label="O (6.0)" shape=box style=filled ]

N3->N7 [label="> 30.5"]

N7 [label="B (14.0)" shape=box style=filled ]

N2->N8 [label="> 13.9"]

N8 [label="O (19.0/1.0)" shape=box style=filled ]

N1->N9 [label="> 36.1"]

N9 [label="FL" ]

N9->N10 [label="<= 16.6"]

N10 [label="B (20.0)" shape=box style=filled ]
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N9->N11 [label="> 16.6"]

N11 [label="CW" ]

N11->N12 [label="<= 40.7"]

N12 [label="O (3.0)" shape=box style=filled ]

N11->N13 [label="> 40.7"]

N13 [label="B (5.0)" shape=box style=filled ]

N0->N14 [label="> 17.4"]

N14 [label="CW" ]

N14->N15 [label="<= 44.3"]

N15 [label="O (22.0)" shape=box style=filled ]

N14->N16 [label="> 44.3"]

N16 [label="FL" ]

N16->N17 [label="<= 19.8"]

N17 [label="B (7.0)" shape=box style=filled ]

N16->N18 [label="> 19.8"]

N18 [label="O (14.0/1.0)" shape=box style=filled ]

}

> plot(zz)
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FL

≤≤ 17.4 >> 17.4

CW

≤≤ 36.1 >> 36.1

FL
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B
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O
(6.0)

B
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O
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B
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CW

≤≤ 44.3>> 44.3

O
(22.0)

FL
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B
(7.0)

O
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3.11.3 kernlab

A rich collection of methods involving kernel transformations is available in the kernlab
package.

> library(kernlab)

> zz = ksvm(sp ~ CW + FL, data = crabs)

Using automatic sigma estimation (sigest) for RBF or laplace kernel

> table(crabs$sp, predict(zz))

B O

B 100 0

O 1 99

> plot(zz, data = crabs)
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4 The MLInterfaces package

Bioconductor’s MLInterfaces package aims to simplify use of machine learning methods
in statistical genomics applications, and to focus infrastructure development to further
the simplification process. Table 1 indicates the scope of the current interface.

The fact that a function is not covered in MLInterfaces does not mean that one
cannot use it with genomic data. However, MLInterfaces simplifies the use of machine
learning tools with exprSet instances, and provides uniform output containers for ma-
chine learning algorithms.
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Package Functions covered
1 class knn, knn1, knn.cv, lvq1, lvq2, lvq3, olvq1, som

SOM

2 cluster pam, agnes, clara, diana, fanny, silhouette

3 e1071 bclust, cmeans, cshell, lca

naiveBayes, svm

4 gbm gbm

5 ipred bagging, ipredknn, slda, cv

6 MASS isoMDS, lda, qda

7 nnet nnet

8 pamr pamr

9 randomForest randomForest

10 rpart rpart

11 stats kmeans, hclust

Table 1: Packages and functions covered by MLInterfaces .
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4.1 exprSet refresher

Golub’s leukemia data are often used for illustrative purposes. These are derived from
the Affymetrix(tm) HU6800 chip. We store them in an exprSet instance.

> library(golubEsets)

> data(golubMerge)

> golubMerge

Expression Set (exprSet) with

7129 genes

72 samples

phenoData object with 11 variables and 72 cases

varLabels

Samples: Sample index

ALL.AML: Factor, indicating ALL or AML

BM.PB: Factor, sample from marrow or peripheral blood

T.B.cell: Factor, T cell or B cell leuk.

FAB: Factor, FAB classification

Date: Date sample obtained

Gender: Factor, gender of patient

pctBlasts: pct of cells that are blasts

Treatment: response to treatment

PS: Prediction strength

Source: Source of sample

Some of the tasks supported by exprSet infrastructure include

• extraction of expression measures as a matrix

> dim(exprs(golubMerge))

[1] 7129 72

> exprs(golubMerge)[1:4, 1:4]

[,1] [,2] [,3] [,4]

AFFX-BioB-5_at -342 -87 22 -243

AFFX-BioB-M_at -200 -248 -153 -218

AFFX-BioB-3_at 41 262 17 -163

AFFX-BioC-5_at 328 295 276 182

• extraction of sample-level data as a data.frame

> dim(pData(golubMerge))
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[1] 72 11

• extraction of vectors of sample-level data as list components

> table(golubMerge$ALL.AML)

ALL AML

47 25

• closure of exprSet object class under gene or sample subsetting

> dim(exprs(golubMerge[1:5, 1:5]))

[1] 5 5

4.2 MLInterfaces and two-gene machines

First we consider qualitative differences between supervised machine learning tools. The
planarPlot function is helpful for qualitative assessment.

We take two genes from Golub’s dataset and form the sub-exprSet:

> litG <- golubMerge[7000:7001, ]

We now compute four learning machine outputs, using CART, random forests, k nearest
neighbors, and a support vector machine.

> library(MLInterfaces)

> ld1 <- ldaB(litG, "ALL.AML", 1:35)

> kn1 <- knnB(litG, "ALL.AML", 1:35)

> rf1 <- randomForestB(litG, "ALL.AML", 1:35)

> svm1 <- svmB(litG, "ALL.AML", 1:35)

Note that the calling sequences for default applications of the learning models are
identical, and are quite simple. The parameters used are the name of the exprSet, the
name of the phenoData variable to be used for classification, and the indices of the
training set. MLInterfaces does not easily support computation of resubstitution-based
assessments of learners. Simple training-test data decompositions or variations on cross-
validation are readily carried out, as will be illustrated below.

Once an MLInterfaces learner has been computed, one can obtain a brief report:

> rf1

MLOutput instance, method= randomForest

Call:

randomForestB(exprObj = litG, classifLab = "ALL.AML", trainInd = 1:35)

predicted class distribution:

ALL AML

12 25

34



> svm1

MLOutput instance, method= svm

Call:

svmB(exprObj = litG, classifLab = "ALL.AML", trainInd = 1:35)

predicted class distribution:

ALL AML

21 16

The computation of the confusion matrix using the test data (data not used to teach
the machine) is very easy:

> confuMat(ld1)

predicted

given ALL AML

ALL 16 10

AML 6 5

> confuMat(kn1)

predicted

given ALL AML

ALL 12 14

AML 2 9

To see the prediction regions implied by the construction of the machines on the
training data, use planarPlot, as in Figure 15:

> par(mfrow = c(2, 2))

> planarPlot(ld1, litG, "ALL.AML")

> title("LDA")

> planarPlot(kn1, litG, "ALL.AML")

> title("K-NN")

> planarPlot(rf1, litG, "ALL.AML")

> title("random forest")

> planarPlot(svm1, litG, "ALL.AML")

> title("svm")

> par(mfrow = c(1, 1))

The R structure created by the R function implementing the machine learning
method can be obtained using the RObject accessor method:

> RObject(svm1)
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Figure 15: Decision regions computed by two-gene machines.
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Call:

svm.default(x = trainDat, y = cl, scale = scale, type = type, kernel = kernel,

degree = degree, gamma = gamma, coef0 = coef0, cost = cost, nu = nu,

class.weights = class.weights, cachesize = cachesize, tolerance = tolerance,

epsilon = epsilon, shrinking = shrinking, cross = cross, fitted = fitted,

subset = subset, na.action = na.action)

Parameters:

SVM-Type: C-classification

SVM-Kernel: radial

cost: 1

gamma: 0.5

Number of Support Vectors: 28

> RObject(ld1)

Call:

lda(trainDat, grouping = cl, prior = prior, tol = tol, method = method,

CV = CV, nu = nu)

Prior probabilities of groups:

ALL AML

0.6 0.4

Group means:

X07496_at X07730_at

ALL -60.8 238

AML -123.1 423

Coefficients of linear discriminants:

LD1

X07496_at -0.00678

X07730_at 0.00218

4.3 Do we need to filter?

Machine learning methods differ with respect to computational resources required on
a given set of data. For the merged Golub data, we find that a reasonably equipped
PowerBook can perform LDA without filtering.

Estimation of required times can be conducted as follows:

37



> cache <- function(name, expr) {

+ cachefile <- paste("tmp-", name, ".RData", sep = "")

+ if (file.exists(cachefile)) {

+ load(cachefile)

+ }

+ else {

+ assign(name, expr)

+ save(list = name, file = cachefile)

+ }

+ get(name)

+ }

> ut <- cache("ut", unix.time(ldaB(golubMerge[1:1000, ], "ALL.AML",

+ 1:35)))

> ut

[1] 2.960 0.363 4.065 0.000 0.000

> ut2 <- cache("ut2", unix.time(ldaB(golubMerge[1:2000, ], "ALL.AML",

+ 1:35)))

> ut2

[1] 6.96 1.21 12.00 0.00 0.00

> ut3 <- cache("ut3", unix.time(ldaB(golubMerge[1:3000, ], "ALL.AML",

+ 1:35)))

> ut3

[1] 13.42 2.62 26.19 0.00 0.00

4.3.1 Non-specific filtering

If a method of interest seems to outstrip available resources, gene filtering can be per-
formed. The genefilter package has a variety of tools that can be used for distribution
based or non-specific filtering. These methods ignore the annotation of the genes. We
will illustrate use of coefficient-of-variation (CV) filtering.

First let’s assess the distribution of CV over genes.

> CV <- function(x) sd(x)/abs(mean(x))

> ACV <- apply(exprs(golubMerge), 1, CV)

> summary(ACV)

Min. 1st Qu. Median Mean 3rd Qu. Max.

9.66e-02 5.45e-01 8.15e-01 3.55e+00 1.55e+00 2.60e+03
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If we want to eliminate the 50% of genes with the smallest coefficient of variation,
we create and run the filter as follows:

> library(genefilter)

> cvf <- cv(0.82)

> cvff <- filterfun(cvf)

> docv <- genefilter(golubMerge, cvff)

> summary(apply(exprs(golubMerge[docv, ]), 1, CV))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.82 1.09 1.56 6.58 2.97 2600.00

The output of genefilter is a logical variable:

> sum(docv)

[1] 3544

We use this to construct a filtered exprSet:

> LG <- golubMerge[docv, ]

> confuMat(ldaB(LG, "ALL.AML", 1:35))

predicted

given ALL AML

ALL 26 0

AML 2 9

Some approaches to filtering are not yet handled in genefilter . To filter away genes
with small median absolute deviations, you could do the following:

> mads <- apply(exprs(golubMerge), 1, mad)

> topm <- golubMerge[mads > 142, ]

> flda <- ldaB(topm, "ALL.AML", 1:35)

> confuMat(flda)

predicted

given ALL AML

ALL 26 0

AML 1 10
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4.3.2 Substantive filtering

Suppose we want to attempt learning in the context of a specific biological process.
For example, we may want to know if different genes associated with apoptosis support
discrimination of ALL and AML in different ways.

There are various ways to search the annotation resource of Bioconductor; one func-
tion that may be useful is jotted down here. You can enter this manually into your
workspace.

> revgrep <- function(x, env) {

+ el <- as.list(env)

+ vals <- unlist(el)

+ tags <- names(vals)

+ ans <- tags[gg <- grep(x, vals)]

+ if (length(ans) > 0)

+ names(ans) <- vals[gg]

+ ans

+ }

We’ll search the gene name environment for references to a substring of ‘apoptosis’.

> library(hu6800)

> app <- revgrep("apop", hu6800GENENAME)

> length(app)

[1] 16

> app[1:2]

caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta, convertase)

"M87507_s_at"

caspase 6, apoptosis-related cysteine peptidase

"U20536_s_at"

> substr(names(app), 1, 36)

[1] "caspase 1, apoptosis-related cystein"

[2] "caspase 6, apoptosis-related cystein"

[3] "caspase 4, apoptosis-related cystein"

[4] "CASP8 and FADD-like apoptosis regula"

[5] "caspase 8, apoptosis-related cystein"

[6] "caspase 8, apoptosis-related cystein"

[7] "caspase 10, apoptosis-related cystei"

[8] "caspase 2, apoptosis-related cystein"

[9] "caspase 2, apoptosis-related cystein"
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[10] "BCL2-interacting killer (apoptosis-i"

[11] "caspase 7, apoptosis-related cystein"

[12] "caspase 5, apoptosis-related cystein"

[13] "caspase 9, apoptosis-related cystein"

[14] "caspase 10, apoptosis-related cystei"

[15] "caspase 8, apoptosis-related cystein"

[16] "caspase 3, apoptosis-related cystein"

> apmrg <- golubMerge[app, ]

> apmrg

Expression Set (exprSet) with

16 genes

72 samples

phenoData object with 11 variables and 72 cases

varLabels

Samples: Sample index

ALL.AML: Factor, indicating ALL or AML

BM.PB: Factor, sample from marrow or peripheral blood

T.B.cell: Factor, T cell or B cell leuk.

FAB: Factor, FAB classification

Date: Date sample obtained

Gender: Factor, gender of patient

pctBlasts: pct of cells that are blasts

Treatment: response to treatment

PS: Prediction strength

Source: Source of sample

4.4 Tuning a learner

The e1071 package includes tools to navigate the tuning parameter space. This is not
yet integrated with MLInterfaces , so one must create the matrix and factor arguments
train.x and train.y.

> set.seed(1234)

> tn1 <- tune(svm, train.x = t(exprs(apmrg)), train.y = apmrg$ALL.AML,

+ ranges = list(cost = c(0.5, 1, 1.5, 2), gamma = seq(0.01,

+ 0.1, 0.01)))

> tn1

Parameter tuning of `svm':

- sampling method: 10-fold cross validation
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- best parameters:

cost gamma

2 0.08

- best performance: 0.248

> confuMat(svmB(apmrg, "ALL.AML", 1:35, cost = 2, gamma = 0.1))

predicted

given ALL AML

ALL 21 5

AML 4 7

4.5 Measures of variable importance

Two procedures handled by MLInterfaces compute measures of variable importance. We
can visualize relative importance with a plot method (Figure 16).

> aprf <- randomForestB(apmrg, "ALL.AML", 1:35, importance = TRUE,

+ ntrees = 5000)

4.6 Cross-validation

The xval method can be used to simplify cross-validation tasks. Case-based and group-
based partitions are supported, along with more general approaches to division of data
between training and test components. Extensions supplied by S. Henderson of Imperial
College allow incorporation of feature selection.

> lda1 <- ldaB(apmrg, "ALL.AML", 1:35)

> confuMat(lda1)

predicted

given ALL AML

ALL 17 9

AML 4 7

> xv1 <- xval(apmrg, "ALL.AML", ldaB, "LOO", 0:0)

> table(xv1, apmrg$ALL.AML)

xv1 ALL AML

ALL 37 13

AML 10 12
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> par(las = 2, mar = c(5, 5, 3, 3))

> plot(getVarImp(aprf), n = 10, resolveenv = hu6800SYMBOL)

CASP10

CASP10

CASP2

CASP6

CASP9

CASP8

CASP4

CFLAR

CASP1

BIK

Mean decrease in accuracy

0.
00

0.
01

0.
02

0.
03

0.
04

Figure 16: Variable importance in the apoptosis subset of genes.
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To use the feature selection procedure, we add a function that returns a score for each
feature.

> t.fun <- function(data, fac) {

+ require(genefilter)

+ xd <- matrix(as.double(exprs(data)), nrow = nrow(exprs(data)))

+ return(abs(rowttests(xd, data[[fac]], tstatOnly = FALSE)$statistic))

+ }

Then we pass this as the fsFun parameter.

> xv2 <- xval(apmrg, "ALL.AML", ldaB, "LOO", 0:0, fsFun = t.fun,

+ fsNum = 5)

> if (is.list(xv2)) table(xv2$out, apmrg$ALL.AML) else table(xv2,

+ apmrg$ALL.AML)

ALL AML

ALL 41 12

AML 6 13

> xv3 <- xval(apmrg, "ALL.AML", ldaB, "LOO", 0:0, fsFun = t.fun,

+ fsNum = 10)

> if (is.list(xv3)) table(xv3$out, apmrg$ALL.AML) else table(xv3,

+ apmrg$ALL.AML)

ALL AML

ALL 39 13

AML 8 12

5 Problems

You will use the bcmlpack package

1. The mystRMA data in bcmlpack are arrays from 10 cell lines studied in the No-
vartis symatlas. There are five pairs of assays with two biological replicates in each
pair. Labels were lost on five of the replicates. Use machine learning tools to pair
the samples with known cell type to their partners:

> library(bcmlpack)

> data(mystRMA)

> sampleNames(mystRMA)

[1] "ee.cd71.cel" "lostA.cel" "lostW.cel" "lostX.cel"

[5] "lostY.cel" "lostZ.cel" "lym.rajiA.cel" "nk.cd56.cel"

[9] "t.cd4.cel" "t.cd8.cel"
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In other words, draw the lines connecting samples listed in column I to their
partners in column II:

column I column II

A nk.cd56

W t.cd4

X t.cd8

Y lym.raji

Z ee.cd71

Describe your choice of learning tool and state your confidence in the solution.

2. Once the pairings have been completed, use biplots to compare the expression pat-
terns of the CD4 and CD8 T cells. Name some genes that are useful to discriminate
these two families of cells. Use limma to do a standard differential expression anal-
ysis, and list the top ten discriminating genes.

3. run and explain the following code:

library(bcmlpack)

library(Biobase)

data(mystRMA)

tlym = 1:10 %in% c(3,5,9,10)

islym = factor(1*tlym)

pData(mystRMA)$islym = islym

phenoData(mystRMA)@varLabels$islym = "t4 or t8 lymphocyte"

library(MLInterfaces)

ff = rpartB(mystRMA[1:500,], "islym", 1:5 , minsplit=1 )

plotcp(RObject(ff))

plot(RObject(ff))

text(RObject(ff))

library(annotate)

library(hgu133a)

lookUp("1007_s_at", "hgu133a", "GENENAME")

gg = randomForestB( mystRMA[1:500,], "islym", 1:5, importance=TRUE)

par(mar=c(5,19,5,5))

plot(getVarImp(gg), n=10, resolveenv=hgu133aGENENAME)

confuMat(gg)

What are the arbitrary parts of the steps taken above, and how can the analysis
be made more thorough?

4. The bcmlpack package includes an exprSet “fuse” related to the ALL package.
In this problem we will analyze the relationship between gene expression and
BCR/ABL fusion, encoded in the mol.biol phenoData variable.
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(a) create a subset of genes related to interleukins

library(annotate)

library(GO)

library(hgu95av2)

lt = sapply(as.list(GOTERM), Term)

gotags = names(lt)[grep("interleukin", lt)]

allil = as.character(na.omit(unlist(lookUp(gotags,

"hgu95av2", "GO2ALLPROBES"))))

library(bcmlpack)

data(fuse)

lit = fuse[ geneNames(fuse) %in% allil, ]

(b) use limma to assess whether these genes are differentially expressed in BCR/ABL

(c) use various tools in MLInterfaces or other machine learning packages to mea-
sure“variable importance”and predictability of BCR/ABL fusion on the basis
of interleukin-related genes – try out various forms of cross-validation

(d) substitute other gene families/functions for “interleukin” and extend your
analysis to try to explain the BCR/ABL fusion phenotype on the basis of
expression.

46


	Introduction
	Prologue on Bioconductor and the R computing environment
	A non-genomic refresher with the crabs data
	Introduction
	Workspace management
	Simple graphics
	Stratified graphics
	Altering data structure
	Distances
	Clustering
	Principal components
	Biplots
	Some supervised learning examples
	Tree-based model evaluation and tuning
	Neural networks

	Some novel procedures
	Association rule mining
	Weka
	kernlab


	The MLInterfaces package
	exprSet refresher
	MLInterfaces and two-gene machines
	Do we need to filter?
	Non-specific filtering
	Substantive filtering

	Tuning a learner
	Measures of variable importance
	Cross-validation

	Problems

