

cDNA Microarray Analysis with BioConductor packages

Nolwenn Le Meur

Copyright 2006

Data Analysis of Microarrays

Experimental Design

Image Analysis

Quality Assessment

Pre-processing

Background Correction

Normalization

Summarization

Analysis

Testing

Outline

Data acquisition & Pre-processing (chap. 4)

- Image analysis
- Quality assessment
- Pre-processing
- Differential expression (chap. 14, 15 & 23)
- Lab : case studies (chap 4 & 23)
 - marray & arrayQuality (Y.H Yang & A.C. Paquet)
 - Iimma (G.K Symth)

Terminology

- Target: DNA hybridized to the array, mobile substrate.
- Probe: DNA spotted on the array (spot).
- print-tip-group : collection of spots printed using the same print-tip (or pin), aka. grid.

- **G**, **Gb**: Cy 3 signal and background intensities
- R, Rb: Cy5 signal and background intensities
- $\mathbf{M} = \log 2(\mathbf{R}) \log 2(\mathbf{G})$
- A = 1/2(log2(R) log2(G))

Image Analysis

1. Location

BIOCONDUCTOR

2. Segmentation

3. Quantification

	A .	B	C	D	E	F	G	н	1	J	К	L	M	N	C
1	209092.1	XM_054214.2	XM_041018.1	XM_030011.2	x63432	\$42658.1	NM_006471.1	NM_005159.1	NM_003090.1	NM_001825.1	NM_001101.2	NM_000258.1	M14603.1	301415.1	DCC
2	Z09092.1	XM 054214.2	XM 040940.2	XM 029192.1	X63432	NM 032169.1	NM 006471.1	NM 005159.1	NM 002007.1	NM 001025.1	NM 001101.2	NM 000257.1	M11146.1	J01415.1	000
3	Z24725.1	XM_053038.1	XM_040948.2	XM_029192.1	X80819.1	NM_032169.1	NM_006471.1	NM_005159.1	NM_002807.1	NM_001825.1	NM_001100.2	NM_000257.1	L39210.1	J01415.1	800
4	Z24725.1	XM 053038.11	XM 039448.1	XM 028372.1	X50019.1	NM 021130.1	NM 006294.1	NM 005110.1	NM 002803.1	NM 001824.1	NM 001100.2	NM 000257.1	L39210.1	J01415.1	900
5	Z15030.1	XM 052916.1	XM_039448.1	XM 028372.1	X54145.1	NM_021130.1	NM 006294.1	NM_005110.1	NM 002803.1	NM 001824.1	NM 001100.2	NM 000257.1	L36033.1	301415.1	ect
6	Z15030.1	XM_052916.1	XM_038278.3	XM_018268.3	X54145.1	NM_016440.1	NM_006111.1	NM_005061.1	NM_002799.1	NM_001697.1	NM_001098.1	NM_000257.1	L36033.1	.301415.1	ect
7	XM_058357.1	XM_052627.2	XM_030278.3	XM_016697.2	X16009.1	NM_016160.1	NM_000111.1	NM_005061.1	3NM_002799.1	NM_001689.1	[NM_001098.1	NM_000256.1	L02005.1	J01415.1	000
8	XM_058357.1	XM_052627.2	XM_038027.1	XM_016290.2	X16069.1	NM_014819.1	NM_006044.1	NM_005006.1	NM_002715.1	NM_001689.1	NM_001035.1	NM_000256.1	L32835.1	J01415.1	BCE
9	XM_058173.1	XM_052331.3	XM_038027.1	XM_016290.2	X16869.1	NM_014819.1	NM_006044.1	NM_005008.1	NM_002715.1	NM_001686.1	NM_001035.1	NM_000237.1	L07782.1	J01415.1	ect
	XM_058173.1	XM_052321.1	XM_037923.1	XM_016198.2	X16869.1	NM_014713.1	NM_006007.1	NM_004768.1	NM_002710.1	NM_001686.1	NM_001008.1	NM_000237.1	L07782.1	J01415.1	901
11	XM_057702.1	XM_051945.1	XM_037923.1	XM_016190.2	X16069.1	NM_014713.1	NM_006007.1	NM_004768.1	NM_002623.2	NM_001686.1	NM_001006.1	NM_000126.1	L05007.1	.301415.1	000
12	XM_057782.1	XM_051945.1	XM_037923.1	XM_000909.1	X16869.1	NM_014391.1	NM_006003.1	NM_004548.1	NM_002623.2	NM_001681.1	NM_000992.1	NM_000125.1	L05087.1	J01415.1	800
13	XM_057346.1	XM_051865.3	XM_037923.1	XM_007127.2	X16869.1	NM_014391.1	NM_006003.1	NM_004548.1	NM_002612.1	NM_001681.1	NM_000992.1	NM_000065.1	L00016.1	J01415.1	BCI
-14	XM_057348.1	XM_051885.3	XM_037797.2[XM_007127.2	X14891.1	NM_014391.1	NM_005917.1	NM_004415.1	NM_002612.1	NM_001681.1	NM_000986.1	NM_000065.1	K02043.1	.301415.1	901
15	XM_057063.1	XM_050614.1	XM_036050.1	XM_007031.4	X14091.1	NM_014391.1	NM_005917.1	NM_004415.1	NM_002521.1	NM_001628.1	NM_000995.1	NM_000019.1	K02043.1	301415.1	000
	DM_057063.1	XM_050614.1	XM_036058.1	XM_007031.4	U9-)1628.1	NM_000972.1	NM_000019.1	K02043.1	D79994.1	908
17	XM_056761.1	XM_049679.1	XM_035796.1	XM_006238.4	09					1613.1	NM_000972.1	NM_000018.1	K02043.1	079994.1	BCI
	XM_058761.1	XM_049679.1	XM_035796.1	XM_005848.2	129					1613.1	NM_000970.2	NM_000018.1	K02043.1	050683.1	901
19	XM_055059.1	XM_049575.2	XM_034179.1	XM_005848.2	-U9				>+ 7	9613.1	NM_000970.2	NM_000016.1	H02043.1	050683.1	000
20	XM_055859.1	XM_049131.2	XM_034179.1	XM_005417.4	U9			UC	110	11553.1	NM_000919.1	NM_000016.1	303620.1	D30648.1	908
	XM_055793.1	XM_049131.2	XM_034146.2	XM_005417.4	09)1553.1	NM_000919.1	NC_001807.4	(J03620.1	028908.1	901
22	XM_055793.1	XM_046843.1	XM_034146.2	XM_004377.3	UBS					01450.1	NM_000587.1	NC_001807.3	(303015.1	028908.1	901
23	XM_055602.1	XM_046043.1	XM_034036.1	XM_003317.4	Ulli one. 1	res_second			pan_www.u.v	ren_sa)1450.1	NM_000507.1	NC_001807.3	303015.1	020900.1	003
24	XM_055682.1	XM_046056.2	XM_034036.1	XM_003317.4	U62136.2	NM_007361.1	NM_005530.1	NM_003319.1	NM_002300.1	NM_001450.1	NM_000543.1	NC_001807.3	J01415.1	D17409.1	BCE
25	DM_055602.1	XM_046056.2	XM_033374.1	XM_003317.4	U62138.2	NM_007361.1	NM_005530.1	NM_003319.1	NM_002300.1	NM_001450.1	NM_000543.1	M94859.1	J01415.1	D17409.1	908
26	XM_055802.1	XM_045954.1	XM_032396.1	XM_003317.4	U49020.1	NM_007159.1	NM_005368.1	NM_003319.1	3NM_002300.1	NM_001450.1	NM_000366.1	M94859.1	301415.1	010040.1	901
27	XM_055545.1	XM_045954.1	XM_032396.1	XM_002062.4	U49020.1	NM_007159.1	NM_005360.1	NM_003319.1	3NM_002156.1	NM_001450.1	NM_000366.1	M64247.1	301415.1	010040.1	903
28	DM_055545.1	XM_044022.1	XM_032004.1	XM_002862.4	U40490.1	NM_007107.1	NM_005368.1	NM_003319.1	NM_002156.1	NM_001402.1	NM_000365.1	M64247.1	J01415.1	D00943.1	908
22	XM_055358.1	XM_044022.1	XM_032004.1	XM_002659.3	U40490.1	NM_007107.1	NM_005368.1	NM_003319.1	NM_002138.1	NM_001402.1	NM_000368.1	M31776.1	301415.1	000943.1	BCI
30	XM_055358.1	XM_043689.1	XM_031823.1	XM_002659.3	572681.1	NM_007079.1	NM_005368.1	NM_003197.2	ENM_002138.1	NM_001402.1	NM_000366.1	M31776.1	301415.1	000943.1	90
31	DM_055266.1	XM_043669.1	XM_031023.1	XM_002601.3	\$72401.1	NM_007079.1	NM_005162.2	NM_000130.1	3NM_002107.1	NM_001402.1	NM_000294.1	M01776.1	301415.1	00050053	900
32	XM_055266.1	XM_043419.2	XM_031736.2	XM_002601.3	\$69022.1	NM_006076.1	NM_005162.2	NM_003130.1	NM_002107.1	NM_001402.1	NM_000294.1	M27024.1	J01415.1	DE050053	BC
33	XM_055102.1	XM_041875.1	XM_031736.2	XM_002558.5	589022.1	NM_006876.1	NM_005159.2	NM_003130.1	NM_002079.1	NM_001402.1	NM_000289.1	M27024.1	301415.1	BC017495	BCI
34	XM_055102.1	XM_041889.2 *	XM_031661.1	XM_002556.5	588022.1	NM_006793.1	NM_006159.2	NM_003130.1	NM_002079.1	NM_001232.1	NM_000289.1	M26700.1	301415.1	BC017495	123
13	XM_054049.1	XM_041069.2+	XM_031661.1	×91647.1	5656022.1	NM_006793.1	NM_005159.2	NM_003130.1	SVM_001909.1	NM_0012321	NM_000209.1	M26700.1	301415.1	UC017109	P ^{CI}
30	XM_054049.1	XM_041393.1	XM_030102.1	X91647.1	569022.1	NM_006513.1	NM_005159.1	NM_003094.1	NM_001969.1	NM_001103.1	NM_000239.1	M26576.1	J01415.1	BC017109	PCI
3/	XM_054461.1	XM_041393.1	XM_030182.1	X66609.1	585022.1	NM_006513.1	NM_006159.1	NM_003094.1	NM_001885.1	NM_001103.1	NM_000258.1	M28676.1	301415.1	BC017189	100
30	xxx_u54461.1	XM_041018.1	XM_030011.2	A66639.1	542658.1	NM_006471.1	NM_005159.1	New_003090.1	2NM_001885.1	Net_001103.1	NW_000258.1	MT4503.1	301415.1	80017080	PC4
H.	Feuil	/ reus2 / Feu	13/						•						2

0 0 0

Quality Filtering

FRED HUTCHINSON CANCER RESEARCH CENTER

Quality Assessment

For each array:

- Diagnostics plots of spot statistics
 - e.g. R and G log-intensities, M, A, spot area.
 - Boxplots;
 - 2D spatial images;
 - Scatter-plots, e.g. MA-plots;
 - Density plots.
- Stratify plots according to layout parameters, *e.g.* print-tip-group, plate.

PCR Plates - Boxplots

HUTCHINS

NSON CENTER

Spatial Effects – Image Plots

Spatial Effects

FRED HUTCHINSON CANCER RESEARCH CENTER

Spotting Pin Quality Decline

after delivery of 5x10⁵ spots

after delivery of 3x10⁵ spots

Print-tip Effects – ECDF plot

Diagnostic plot with arrayQuality

diagPlot.6Hs.195.1.png : Qualitative Diagnostic Plots

Call: list(maNormLoess(x = "maA", y = "maM", z = "maPrintTip", w = NULL, subset = subset, span = span, ...))

15

maA

Data Exploration with *limma*

(Limma user Guide)

Quality Assessment: Summary

- For each array:
- Diagnostics plots
- Stratify
- BioC packages:
- arrayQuality
- arrayMagic

Outline

- Data acquisition & Pre-processing (chap. 4)
 - Image analysis
 - Quality assessment

– Pre-processing

- Differential expression (chap. 14, 15 & 23)
- Lab : case studies (chap 4 & 23)
 - marray & arrayQuality (Y.H Yang & A.C. Paquet)
 - limma (G.K Symth)

Variance-Bias trade off

BIOCONDUCTOR

Sources of Variation

- RNA extraction
- reverse transcription
- labeling efficiencies
- Scanner settings

PCR

- DNA concentration
- Printing or pin
- cross-hybridization

Systematic

similar effect on many measurements
corrections can be estimated from data

Calibration

Stochastic

- too random to be explicitly accounted for
- "noise"

Error Model

_ _ _

Background Correction

subtraction, movingmin

Minimun,edwards, normexp,...

More details ... *limma* >?backgroundCorrect

Background Correction

none

substraction

normexp

Why Normalize?

Theory

Cy5 vs Cy3

Reality

BIOCONDUCTOR

Cy3

Normalization

Identify and remove the effects of systematic variation

- Normalization is closely related to quality assessment. In a ideal experiment, no normalization would be necessary, as the technical variations would have been avoided.
- Normalization is needed to ensure that differences in intensities are indeed due to differential expression, and not some printing, hybridization, or scanning artifact.
- Normalization is necessary before any analysis which involves within or between slide comparisons of intensities, e.g., clustering, testing.

Data Transformation

measured intensity = offset + gain × true abundance

$$Y_{ik} = B_{ik} + \alpha_{ik} S_k$$

Intensity measurements adapt a distribution that is closer to the normal distribution

Muliplicative noise becomes additive noise: variance more independent of intensity

Example: log transformation

Normalization methods

Smyth, G. K., and Speed, T. P. (2003). In: *METHODS: Selecting Candidate Genes from DNA Array Screens: Application to Neuroscience*

Two channel normalization

Location: centers log-ratios around zero using A and spatial dependent bias

Swirl 93 array: within-print-tip-group loess normalization log-ratio

Two channel normalization

- Location: centers log-ratios around zero using A and spatial dependent bias
- Scale: adjust for different in scale between multiple arrays

One channel normalization

- As technology improves the spot-to-spot varation is reduced
- Development of normalization techniques that work on the absolute intensities

Ex: quantile normalization (*limma*) variance stabilization (*vsn*)

Quantile Normalization

Bolstand et al.(2003)

- Meaningful around 0
- Original intensities may be negatives

(Huber et al. 2004)

Variance stabilization (vsn)

Variance stabilization (vsn)

- interpretation as "fold change"

- + interpretation even in cases where genes are off in some conditions (negative values)
- + visualization

+ can use standard statistical methods (hypothesis testing, ANOVA, clustering, classification...) without the worries about low-level variability that are often warranted on the log-scale

Preprocessing : Summary

For each array:

- Background correction or not
- Normalization: bias-variance trade-off
- Diagnostic plots

BioC pacakges:

- marray
- Iimma

Outline

- Data acquisition & Pre-processing (chap. 4)
 - Image analysis
 - Quality assessment
 - Pre-processing
- Differential Expression (chap. 14, 15 & 23)
- Lab : case studies (chap 4 & 23)
 - marray & arrayQuality (Y.H Yang & A.C. Paquet)
 - limma (G.K Symth)

Experimental Designs

Reference design with dye swap

Loop

Avoid Confounding effect

Yang, Y. H. et Speed, T. (2002). Design issues for cDNA microarray experiments. *Nat.Rev.Genet.*, **3**: 579-588.

Experimental Designs

- Simple comparisons
- Technical replicates
- Dye swap
- Within array replicate spots
- Two groups
- Several groups
- Direct two color designs
- Factorial design
- Time Course

Case Studies Chap. 23

Differentially Express Genes

Fold change

But no assessment of statistical significance

Differentially Express Genes

Example: The two–sample t–statistic is used to test equality of the group means μ_1 , μ_2 .

The *p*-value p_g is the probability under the null hypothesis (here: $\mu_1 = \mu_2$) that the test statistic is at least as extreme as the observed value T_g . Under the null hypothesis, $Pr(p_g < \alpha) = \alpha$.

Differentially Express Genes

- Fold change
- Parametric test
 - standard t-test
 - Welch t-test
- Non parametric
 - Wilcoxon test
 - Mann-Whitney
- Permutation test

Multiple testing

	Number of	Gene significance level					
	genes	P-values < 0.01	0.05	0.1	0.15		
10		< 1	< 1	1	1.5		
	20	< 1	1	2	3		
Те	Test of Thousands of hypotheses simultaneously!						
	Increased chance of false positives						
	5000	50	250	500	750		
	10000	100	500	1000	1500		

Drăghici (Chapman & Hall 2003)

Individual p-values of 0.01 no longer correspond to significant findings.

-> Adjust for multiple testing

Nonspecific filtering

- Remove genes :
 - Low intensities
 - Do not show sufficient variation across all samples
- Select genes :
 - Known to interact in a specific biological process, e.g. GO (Chap 14.)

Type of Error

	Ho is true	Ho is false
Ho not rejected	True negatives 1- α	False negatives (Type II error) β
Ho rejected	False positives (type I error) α	True positives <mark>(Power)</mark> 1-β

Control of Error

• Type II error or Minimizing False negatives

->power of tests, sample size

- Type I error
 - -> Control false positive rate (FWER,FDR) or p-value
 - Family Wise Error Rate

control probability of false positive on entire set of genes

- False Discovery Rate

control false discovery rate on set of identified genes

Control of Type Error I

Control	Method	Pros/Cons
FWER	Bonferroni Šidák Holm Hochberg Modified Westfall & Young	Very conservative Very conservative Assumption free, conservative Independent variables Exploit <i>joint</i> distribution of test statistics, need replicates
FDR	Benjamini & Hochberg Benjamini & Yekutieli Tusher	Independent variables conservatives Sensitive to the number of replicates

Ge, Y & Dudoit, S. (2003) Technical report #633

FWER vs FDR

- FWER if high confidence in all selected genes is desired. Loss of power due to large number of tests: many differentially expressed genes may not appear significant.
- If a certain proportion of false positives is tolerable: Procedures based on FDR are more flexible; the researcher can decide how many genes to select, based on practical considerations

Moderated t-statistics

t-test estimate the variance of each gene individually.

- > Ok if we have enough replicates,
- but with few replicates (say 2–5 per group), these variance estimates are highly variable.
- moderated t-statistic, the estimated gene-specific variance s_g² is replaced by a weighted average of s_g² and s₀², which is a global variance estimator obtained from pooling all genes.

This gives an interpolation between the t-test and a fold-change criterion.

Examples: packages *limma*, *siggenes*

limma moderated t-statistic

- complex experiments: linear models, contrasts
- empirical Bayes methods for differential expression: t-tests, F-tests, posterior odds
- inference methods for duplicate spots, technical replication
- control of FDR across genes and contrasts

Differential Expr. : Summary

- Permutation tests
- Multiple testing
- Pre-filtering or subsetting
- Rank genes

BioC pacakges:

- limma
- multtest

BioC Task View: TwoChannel

🔷 - 🎅 💿 😭 💿 http://www.bioconductor.org/packages/bioc/1.8/TwoChannel.html

Subview of

Microarray

Packages in view

Package	Maintainer	Title
arrayQuality	A. Paquet	Assessing array quality on spotted arrays
bridge	Raphael Gottardo	Bayesian Robust Inference for Differential Gene Expression
genArise	IFC Development Team	Microarray Analysis tool
GEOquery	Sean Davis	Get data from NCBI Gene Expression Omnibus (GEO)
limma	Gordon Smyth	Linear Models for Microarray Data
<u>limmaGUI</u>	Keith Satterley	GUI for limma package
<u>maDB</u>	Johannes Rainer	Microarray database and utility functions for microarray data analysis.
makePlatformDesign	Benilton Carvalho	Platform Design Package
marray	Yee Hwa (Jean) Yang	Exploratory analysis for two-color spotted microarray data
mNorm	Tarca Laurentiu	Spatial and intensity based normalization of cDNA microarray data based on robust neural nets
nudge	N. Dean	Normal Uniform Differential Gene Expression detection
oligo	Benilton Carvalho	Oligonucleotide Arrays
OLIN	Matthias Futschik	Optimized local intensity-dependent normalisation of two-color microarrays
OLINgui	Matthias Futschik	Graphical user interface for OLIN
rama	Raphael Gottardo	Robust Analysis of MicroArrays
snapCGH	Mike Smith	Segmentation, normalisation and processing of aCGH data.
spotSegmentation	Chris Fraley	Microarray Spot Segmentation and Gridding for Blocks of Microarray Spots
vsn	Wolfgang Huber	Variance stabilization and calibration for microarray data

🔻 🜔 Go 💽

- 8 ×

Outline

- Data acquisition & Pre-processing (chap. 4)
 - Image analysis
 - Quality assessment
 - Pre-processing
- Differential expression (chap. 14, 15 & 23)
- Lab : case studies (chap 4 & 23)
 - marray & arrayQuality (Y.H Yang & A.C. Paquet)
 - limma (G.K Symth)

Getting started

	Preprocessing					
	limma p	ackage	marray package			
Action	Function	Class - Object	marray	Class - Object		
read target file	readTargets	dataframe	read.marrayInfo	marrayInfo		
read image file	read.maimages	RGList	read.marrayRaw, read.GenePix, read.Spot, read.SMD, read.Agilent	marrayRaw		
read gene list	readGAL	RGList\$genes	read.Galfile	marrayInfo, marrayLayout		
read spot type	readSpotTypes, controlStatus	RGList\$genes\$status				
array layout	getLayout	RGList\$printer	read.marrayLayout, Layout	marrayLayout		
background correction	backgroundCorrect					
one array normalization	normalizeWithinArrays, MA.RG	MAList	maNormMain	marrayNorm		
normalization between arrays	normalizeBetweenArra ys	MAList				

