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Experiments/Data

m There are n samples

m for each sample we measure mRNA
expression levels on G genes

m we consider the case where there are two
phenotypes (e.g. BCR/ABL vs NEG)

m A t-test can be computed, for each gene
comparing the two samples (other test
statistics can be handled easily)



Differential Expression

m Usual approach is to try and find the set of
differentially expressed genes [those with
extreme values of the univariate statistic, X]

m Often adjusting in some way for multiple
comparisons
m This can be criticized on many grounds

m it introduces an artificial distinction - differentially
expressed

m it focuses attention on only a few genes that change
by a large amount



Differential Expression

m p-value correction methods don'’t really do what
we want

m p-values are not signed, so the effects may be
in different directions

m {0 see if too many genes of a particular type
have been selected a Hypergeometric
calculation is made, but it relies on the articial
distinction between expressed and not
expressed

m we (and others) propose a different approach:
find sets of genes whose expression changes in
concert, possibly not by a large amount



Holistic Approach

= we will attempt to find categories, or sets,
of genes where there are potentially small
but coordinated changes in gene
expression

m for example, if all genes are expressed at
slightly higher (or all at slightly lower)
values for one phenotype versus the
other



Related Work

PGC-1 alpha-responsive genes involed in
oxidative phosphorylation are coordinately
downregulated in human diabetes. Mootha et
al, Nature Genetics, 2003

MTOR inhibition reverses Akt-dependent
prostate intraepithelial neoplasia through
regulation of apoptotic and HIF-1 dependent
pathways, Majumder et al, Nature Medicine,
2004

Discovering statistically significant pathways in
expression profiling studies. Tian et al, PNAS,
2005,



Gene Set Enrichment

m proposed by Mootha et al (2003)

m very similar (and was one of the motivations for
this work) but is more complex and
computationally expensive

m they discuss gene sets, S, which are the same
as categories

m they sidestep multiple testing issues by testing
a single hypothesis (the maximal observed per
set statistic)

m | will sidestep multiple testing issues by simply
reporting unadjusted p-values



Gene Set Enrichment

For each gene set S, a Kolmogorov-Smirnov
running sum is computed

The assayed genes are ordered according to
some criterion (say a two sample t-test; or
signal-to-noise ratio SNR).

Beginning with the top ranking gene the
running sum increases when a gene in set S is
encountered and decreases otherwise

The enrichment score (ES) for a set S is
defined to be the largest value of the running
sum.



Gene Set Enrichment

m The maximal ES (MES), over all sets S under
consideration is recorded.

m For each of B permutations of the class label,
ES and MES values are computed.

m The observed MES is then compared to the B
values of MES that have been computed, via
permutation.

m This is a single p-value for all tests and hence
needs no correction (on the other hand you are
testing only one thing).
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Selection of Categories

U

pathways (KEGG, cMAP, BioCarta)

2 molecular function, biological process cellular
location (GO)

1 predefined sets from the published literature
etc

regions of synteny; chromosome bands
some care should be exercised to select

categories that are of interest a priori

a there are more categories than genes so you will
simply end up back in the multiple comparison
problem

D O



Categories

m a set of IS merely a grouping of
genes (entities)

m the groups do not need to be exhaustive or
disjoint

m we do not need to be completely right, we can

have some genes that are not in the category,
and we can miss some, but not too many

m we are relying on averaging to help adjust for
mistakes

m given the state of genomic knowledge this
seems reasonable



Simple Statistical Approach

the data matrix has G rows (one for each gene)
and N columns (one for each sample)

let’s assume that there are two phenotypes of
interest, so we have a two-sample comparison

we can compute univariate test statistics, x, a
G-vector

select some set of categories, or gene sets, and
let C denote the number of such sets

you should address the problem that very
commonly some genes are represented by a
single probe and others by many (same for
Hypergeometric testing)



Categories

m define A, a C by G matrix, such that A[//]=1 if
gene jis in category /, and A[/,/]=0, otherwise

m the row sums of A represent the number of
genes in each category

m the column sums of A represent the number of
categories a gene is in

m if two rows are identical (for a given set of
genes) then the two categories are aliased (in
the usual statistical sense)

m other patterns can can cause problems and
need some study



Categories

m the simplest transformation is to simply sum up
the t-statistics for all genes in each category,

Z = Ax

m we divide the sum by the square root of the
number of genes per category (this is right if
genes are independent - very unrealistic)

m then the resultant statistics, under the null
hypothesis, have approximately a N(0,1)
distribution

m we could also use other, per category, test
statistics such as the median, or sign-test



Categories: Reference Distribution

m an alternative is to generate many versions of X,
the per category test statistic, from some
reference distribution

m e.g. go back to the original expression data and
either permute the sample labels or bootstrap to
provide a reference distribution

m you should not (as Tian et al do) permute the
gene labels [what is your null hypothesis?]



Comparisons

m you can do either within category comparisons
- for a given category is the observed test statistic
unusual
m or overall comparisons
. are any of the observed category statistics unusually
large with respect to the entire reference distribution
m the former requires some consideration of
multiple testing issues

m note that the approach is inherently multivariate,
one data set gives G test statistics (one per
gene) and these are transformed to yield one
per category



Bayesian Approach

m following Newton et al, we could compute
the posterior probability that a gene is
differentially expressed

m then x, our G vector is a set of
probabilities

m Z = AX, is then a C vector of the expected
number of differentially expressed genes
iIn each category



Bayesian Approach

m adjustment for category size is needed

m an expected number per category can be
obtained by using p*=mean of the
posterior probabilities and the category
size

m categories that deviate substantially from
that expected number are of interest



Example: ALL Data

m samples on patients with ALL were
assayed using HGu95Av2 GeneChips

m we were interested in comparing those
with BCR/ABL (basically a 9;22

translocation) with those that had no
cytogenetic abnormalities (NEG)

m 37 BCR/ABL and 42 NEG



Example: ALL Data

m we then mapped the probes to KEGG pathways

m the mapping to pathways is via EntrezGene ID

- we have a many-to-one problem and solve it by
taking the probe set with the most extreme t-statistic

m we chose to only consider pathways with at
least 10 genes

m this leaves us with 79 samples, 1036 genes and
70 pathways
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Which Categories

m SO the gg-plot looks interesting and
identifies at least one category that looks
interesting

m we identify it, and create a plot that shows
the two group means (BCR/ABL and
NEG)

m if all points are below or above the 45
degree line that should be interesting



Different Univariate test statistics

ID PW Name PyMn | pyMd | pyST | Size

1 | 04514 | Cell adhesio... 0.0000 [ 0.0000 | 0.0008 38
[ &R 2 | 04940 | Type I diabe... 0.0018 [ 0.0020 | 0.0013 20
3 | 04060 | Cytokine-cyt... 0.0030 | 0.0050 | 0.0001 54
4 | 04610 | Complement a... | 0.0000 | 0.0004 14
5 | 04512 | ECM-receptor... | 0.0000 | 0.0004 15
6 | 04530 | Tight juncti... 0.0000 | 0.0020 40
7 | 04520 | Adherens jun... 0.0000 | 0.0034 34
8 | 04670 | Leukocyte tr... 0.0002 | 0.0010 49
9 | 04080 | Neuroactive ... 0.0002 | 0.0012 20
10 | 04510 | Focal adhesi... 0.0006 | 0.0028 73
11 | 01430 | Cell Communi... | 0.0014 | 0.0004 12
12 | 03010 | Ribosome 0.0080 | 0.0000 23
13 | 04360 | Axon guidanc... 0.0004 38
14 | 04810 | Regulation o... 0.0066 79
15 | 04210 | Apoptosis 0.0096 16
16 | 04640 | Hematopoieti... 0.0008 38
17 | 00190 | Oxidative ph... 0.0001 59
18 | 00620 | Pyruvate met... 0.0003 16
19 | 00230 | Purine metab... 0.0027 H8
20 | 04110 | Cell cycle 0.0046 66
21 | 00071 | Fatty acid m... 0.0065 14
22 | 00010 | Glycolysis /... 0.0085 22
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Aliasing

m all others have ignored this - but it does
matter

= when we use categories, two categories
can have substantial overlap

m if they are both significant, we might ask
why



For cytokine-cytokine and Jak-
Stat we have
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NEG

Comparison of Gene Expression

Jak-STAT signaling pathway Cytokine-cytokine receptor interaction
Overall: 4.026 Overall: 6.077
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The Analysis

m and when the genes involved, are
separated into three groups
m those in Cytokine-Cytokine only
= those in Jak-Stat only
= those common

m then we find that the first and third are
significant, but the second (Jak-Stat
alone) is not




Some other extensions

m categories might be a better way to do
meta-analysis

m one of the fundamental problems with
meta-analysis on gene expression data is
the gene matching problem

m even technical replicates on the same
array do not show similar expression
patterns



Extensions

m if Instead we compute per category effects
these are sort of independent of the probes that
were used

m matching is easier and potentially more
biologically relevant

m the problem of adjustment still exists; how do
we make two categories with different numbers
of expression estimates comparable



Extensions

® yOu can do per array computations

m residuals are one of the most underused
tools for analyzing microarrays

m we first filter genes for variability

m next standardize on a per gene basis -
subtract the median divide by MAD

m now X*= AX, is a Cxn array, one entry for
each category for each sample
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Concluding Remarks

m the analysis of gene expression data still
requires more research

m we should be looking at mechanisms for
coordinated expression
m transcription factors
= amplifications
m deletions
m change in chromatin structure



Concluding Remarks

m p-value corrections are not really the right
approach here

m bringing more biology to bear seems to
be more likely to bear fruit

®m we need some results to indicate how to
deal with the coordinated gene
expression (lack of independence within a
category)
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