
Biostrings Lab (BioC2007)

H. Pagès
Gentleman Lab

Fred Hutchinson Cancer Research Center
Seattle, WA

6 August, 2007

Introduction

The Biostrings package: provides the infrastructure for storing and manipulating
large nucleotide and amino acid sequences (up to hundreds of millions of letters)
in R.

We need R version 2.6 and Biostrings version 2.5.19 for this lab:

> library(Biostrings)

> sessionInfo()

R version 2.6.0 Under development (unstable) (2007-08-14 r42506)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=en_CA.UTF-8;LC_NUMERIC=C;LC_TIME=en_CA.UTF-8;LC_COLLATE=en_CA.UTF-8;LC_MONETARY=en_CA.UTF-8;LC_MESSAGES=en_CA.UTF-8;LC_PAPER=en_CA.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_CA.UTF-8;LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] Biostrings_2.5.19

loaded via a namespace (and not attached):
[1] rcompgen_0.1-15

The BSgenome.* packages: data packages containing the full genome se-
quence for a given organism. Ex: BSgenome.Celegans.UCSC.ce2, BSgenome.Hsapiens.UCSC.hg18,
etc... Use the available.genomes() function from the BSgenome package to
see the list of available BSgenome.* packages (network access required):

> library(BSgenome)

> available.genomes()

1

[1] "BSgenome.Celegans.UCSC.ce2"
[2] "BSgenome.Dmelanogaster.BDGP.Release5"
[3] "BSgenome.Dmelanogaster.FlyBase.r51"
[4] "BSgenome.Dmelanogaster.UCSC.dm2"
[5] "BSgenome.Hsapiens.UCSC.hg16"
[6] "BSgenome.Hsapiens.UCSC.hg17"
[7] "BSgenome.Hsapiens.UCSC.hg18"
[8] "BSgenome.Mmusculus.UCSC.mm6"
[9] "BSgenome.Mmusculus.UCSC.mm7"
[10] "BSgenome.Mmusculus.UCSC.mm8"
[11] "BSgenome.Scerevisiae.UCSC.sacCer1"

Then install with biocLite():

> source("http://bioconductor.org/biocLite.R")

> biocLite("BSgenome.Dmelanogaster.FlyBase.r51")

Note that those BSgenome.* packages are big (from a few Mb to more than
800 Mb for BSgenome.Hsapiens.UCSC.hg18) so this installation over the network
can take a long time.

BString objects

The BString class is the basic container for big sequences. Unlike standard
character vectors in R that can store an arbitrary number of strings, a BString
object can only contain 1 string. For sequences commonly found in biology, 3
variants of the BString class are available:

1. The DNASstring class for storing a DNA sequence.

2. The RNAString class for storing a RNA sequence.

3. The AAString class for storing a sequence of amino acids.

For each of these classes, there is a constructor that allows to create an
instance of the class from a character string:

> s1 <- BString("hello")

> s2 <- DNAString("GACCCT")

> s3 <- AAString("MARKSLEMSIR")

Exercise 1

1. Create some arbitrary BString , DNAString and AAString instances.

2. Apply nchar and alphabet on them.

3. Apply alphabetFrequency and reverseComplement on the DNAString
objects.

2

4. Extract substrings by using the subsetting operator [and by using the
subBString function.

IMPORTANT: The subBString function should always be preferred to the
subsetting operator [for substring extraction. More on this later...

BSgenome.* packages

A BSgenome.* package is a data package containing the full genome sequence
for a given organism.

Please refer to the introduction of this document for how to display the list
of BSgenome.* packages currently available and how to install them over the
network.

The name of a BSgenome.* package is made of 4 parts separated by a dot
(e.g. BSgenome.Celegans.UCSC.ce2). The 1st part is always BSgenome, the 2nd
part is the name of the organism (abbreviated), the 3rd part is the name of the
organisation who assembled the genome and the 4th part is the release string
or number used by this organisation for this assembly of the genome.

A BSgenome.* package contains a single top level object whose name matches
the second part of the package name:

> library(BSgenome.Celegans.UCSC.ce2)

> Celegans

C. elegans genome:
- organism: Caenorhabditis elegans
- provider: UCSC
- provider version: ce2
- release date: Mar. 2004
- release name: WormBase v. WS120
- single sequences (DNAString objects, see '?seqnames'):

chrI chrII chrIII chrIV chrV chrX chrM
- multiple sequences (BStringViews objects, see '?mseqnames'):

upstream1000 upstream2000 upstream5000
(use the '$' or '[[' operator to access a given sequence)

Displaying this object shows some information about the provenance of this
genome plus 2 indexes of sequences: the single sequences and the multiple se-
quences. The single sequences are DNAString objects and the multiple se-
quences are BStringViews objects (will be introduced soon).

Exercise 2

1. Display several chromosomes of C. elegans. Do they contain IUPAC ex-
tended letters?

3

2. Load BSgenome.Dmelanogaster.FlyBase.r51 (fruit fly genome). Do the chro-
mosomes contain IUPAC extended letters?

3. Extract the last 10M bases from fruit fly chromosome 2L. Use the sys-
tem.time function to compare the performance of subBString vs the
subsetting operator [.

BStringViews objects

A BStringViews object contains a set of views on the same sequence called ”the
subject”. Each view is defined by its start and end locations: both are integers
such that start <= end. We use the views function to create a BStringViews
object for a given set of start and end locations. Here we create a BStringViews
object with 4 views:

> v <- views(DNAString("TAATAATG"), 3:0, 5:8)

> v

Views on a 8-letter DNAString subject
Subject: TAATAATG
Views:

start end width
[1] 3 5 3 [ATA]
[2] 2 6 5 [AATAA]
[3] 1 7 7 [TAATAAT]
[4] 0 8 9 [TAATAATG]

Note that two views can overlap and that a view can be ”out of limits” i.e.
it can start before the first letter of the subject or/and end after its last letter.

The subject is the DNA sequence TAATAATG:

> subject(v)

8-letter "DNAString" instance
Value: TAATAATG

A BStringViews object can be subsetted like a standard character vector:

> length(v)

[1] 4

> v[4:2]

Views on a 8-letter DNAString subject
Subject: TAATAATG
Views:

start end width
[1] 0 8 9 [TAATAATG]
[2] 1 7 7 [TAATAAT]
[3] 2 6 5 [AATAA]

4

The start/end/width (integer vectors) can be extracted with start(), end()
and width():

> start(v)

[1] 3 2 1 0

> end(v)

[1] 5 6 7 8

> width(v)

[1] 3 5 7 9

A given view can be extracted as a BString (or derived) object with the [[
operator:

> v[[2]]

5-letter "DNAString" instance
Value: AATAA

Note this operator returns an instance of the same class as the subject.

Exercise 3

1. Compare nchar vs width on v.

2. Find a programatical way to remove ”out of limits”views from a BStringViews
object.

Exercise 4

1. Use the mask function to mask the Ns in fruit fly chromosome 2L. Apply
mask again to the result (and without the second argument) to see the
location of the Ns. Do we have isolated Ns or N-blocks?

2. Find the location of the Ns in C. elegans chromosome III and in H. sapiens
chromosome 1.

3. What’s the longest A-block in fruit fly chromosome 2L?

Exercise 5

The objective of this exercise is to ”look at” the introns of a given eukaryote.
For this we need:

1. The BSgenome.* package with the full genome sequence of the target or-
ganism.

5

2. Annotations that give us the gene and exon locations of the organism.
Note that it’s important to make sure that these annotations are targetting
exactly the version (build/assembly) of the genome that we are using.

3. The Biostrings package.

We do this analysis on the fruit fly genome: we use genome r5.1 from Fly-
Base (the BSgenome.Dmelanogaster.FlyBase.r51 package) and a package of anno-
tations for this genome, the ann.Dmelanogaster.FlyBase.r51 package, made from
the GFF files provided by FlyBase:

> library(ann.Dmelanogaster.FlyBase.r51)

The annotations in this package are organized as follow: CHR_SHORTNAMES
gives the list of chromosomes for which annotations are provided:

> CHR_SHORTNAMES

[1] "2L" "2R" "3L" "3R" "4" "X" "M"

and for each chromosome, 2 data frames are provided: 1 for the genes and 1 for
the exons:

> colnames(getAnnGenes("2L"))

[1] "seqname" "source" "start"
[4] "end" "strand" "attrib"
[7] "Name" "Alias" "cyto_range"
[10] "putative_ortholog_of" "Dbxref"

> colnames(getAnnExons("2L"))

[1] "seqname" "source" "start" "end" "strand" "Name" "Parent"
[8] "Dbxref"

For our analysis, we only need the "seqname", "start", "end" and "strand".

> getAnnGenes("2L")[1:5, c("seqname", "start", "end", "strand")]

seqname start end strand
FBgn0031208 2L 7529 9491 +
FBgn0002121 2L 9836 21372 -
FBgn0031209 2L 21919 23888 -
FBgn0051973 2L 25402 59242 -
FBgn0067779 2L 67044 71390 +

> getAnnExons("2L")[1:5, c("seqname", "start", "end", "strand")]

6

seqname start end strand
CG11023:1 2L 7529 8116 +
CG11023:2 2L 8229 8589 +
CG11023:3 2L 8668 9491 +
CG2671:9 2L 9836 11344 -
CG2671:8 2L 11410 11518 -

The row names are gene ids for the former and exon ids for the later.
Finally, the data object EXON2GENE (named character vector) provides the

mappping between exon ids and gene ids (many-to-one relationship):

> data(EXON2GENE)

> EXON2GENE["CG11023:1"]

CG11023:1
"FBgn0031208"

To get all the exons belonging to a given gene:

> names(EXON2GENE)[EXON2GENE == "FBgn0031208"]

[1] "CG11023:1" "CG11023:2" "CG11023:3"

1. Extract the start and end position of the exons belonging to gene FBgn0025803
(chromosome 3R).

2. Load BSgenome.Dmelanogaster.FlyBase.r51 and create a BStringViews ob-
ject where the subject is chromosome 3R and the views are the exon
locations found previously.

3. Apply the mask function on this BStringViews object. Is this new BStringViews
object representing the introns sequences for gene FBgn0025803? What
needs to be adjusted?

4. Are we discovering something?

The matchPattern function

This function finds all matches of a given pattern in a sequence. Using match-
Pattern on a BString , DNAString or AAString object is much faster than
working with regular expressions, be it in R (on a standard character string) or
in another language like Python.

> library(BSgenome.Hsapiens.UCSC.hg18)

> chr1 <- Hsapiens$chr1

> system.time(m <- matchPattern("AAAAAAAAAATT", chr1))

user system elapsed
0.384 0.000 0.386

7

> m

Views on a 247249719-letter DNAString subject
Subject: TAACCCTAACCCTAACCCTAACCCTAACCCTAAC...NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Views:

start end width
[1] 34037 34048 12 [AAAAAAAAAATT]
[2] 154549 154560 12 [AAAAAAAAAATT]
[3] 403863 403874 12 [AAAAAAAAAATT]
[4] 538110 538121 12 [AAAAAAAAAATT]
[5] 538654 538665 12 [AAAAAAAAAATT]
[6] 690385 690396 12 [AAAAAAAAAATT]
[7] 729676 729687 12 [AAAAAAAAAATT]
[8] 832484 832495 12 [AAAAAAAAAATT]
[9] 1027883 1027894 12 [AAAAAAAAAATT]
...

[5126] 245825662 245825673 12 [AAAAAAAAAATT]
[5127] 245946178 245946189 12 [AAAAAAAAAATT]
[5128] 246110416 246110427 12 [AAAAAAAAAATT]
[5129] 246114017 246114028 12 [AAAAAAAAAATT]
[5130] 246248087 246248098 12 [AAAAAAAAAATT]
[5131] 246282785 246282796 12 [AAAAAAAAAATT]
[5132] 246460105 246460116 12 [AAAAAAAAAATT]
[5133] 247068709 247068720 12 [AAAAAAAAAATT]
[5134] 247177225 247177236 12 [AAAAAAAAAATT]

Also, regular expressions can miss some matches:

> length(gregexpr("ATA", "ATATA"))

[1] 1

matchPattern returns all matches:

> length(matchPattern("ATA", "ATATA"))

[1] 2

Exercise 6

1. Find all the matches of an arbitrary nucleotide sequence in fruit fly chro-
mosome 2L.

2. In fact, if we don’t take any special action, we only get the hits in the plus
strand of the chromosome. Find the matches in the minus strand too.
IMPORTANT: You should always avoid to reverseComplement an entire
chromosome sequence (this is very inefficient).

8

Exercise 7

The objective of this exercise is to check that, for a given probe of a given
chip, the hit location found by matchPattern is in agrement with the location
reported in the annotations available for this chip. We use Affymetrix human
chip hgu95av2 for this analysis.

1. Use hgu95av2 to find the chromosome location of the gene targetted by
probeset 1138_at.

2. Use hgu95av2probe to find all the probe sequences for this probeset id (put
the result in a character vector called probes).

3. Use matchPattern to find the corresponding hit for each probe in the cor-
responding chromosome (use a sapply(probes, function(probe) ...)
construction to put all the results in a single list, the returned list will
have one element per probe in probes). Do we have a hit for every probe?
Compare with hgu95av2CHRLOC[["1138_at"]]. Do you see something
wrong?

4. Try again with mismatch=1. Do we have a hit for every probe?

5. In fact, according to hgu95av2probe, probeset 1138_at should hit a gene
in the antistrand. Does this look correct?

Exercise 8

IUPAC extended letters can be used to express ambiguities in the pattern or
in the subject of the search. This is controlled via the fixed argument of the
matchPattern function. If fixed is TRUE (the default), all letters in the pattern
and the subject are interpreted litterally. If fixed is FALSE, IUPAC extended
letters in the pattern and in the subject are interpreted as ambiguities e.g. M will
match A or C and N will match any letter (the IUPAC_CODE_MAP named character
vector gives the mapping between IUPAC letters and possible nucleotides they
stand for). The most common use of this feature is to introduce wildcards in
the pattern by replacing some of its letters with Ns.

1. Search pattern GAACTTTGCCACTC in fruit fly chromosome 2L.

2. Repeat but this time allow the 2nd T in the pattern (6th letter) to match
anything. Anything wrong?

3. You can use the mask function or fixed="subject" to work around the
previous problem. Try and compare.

Exercise 9

The objective of this exercise is to simulate a PCR experiment on the fruit fly
genome. A PCR experiment uses primer pairs specifically designed to target

9

the genome of a given organism to ”amplify” certain regions of this genome.
Each primer pair is made of a forward and a reverse primer. Both primers are
short nucleotide sequences with 2 parts: a gene-specific part (the ”probe”) and a
”tag” used for the amplification processus. We’ll call the forward probe and the
reverse probe the probe parts of the forward and reverse primer respectively.
For each primer pair, the forward and reverse probes are designed to hit the
same chromosome at nearby locations. The region between the 2 hits is called
an amplicons: it is the region that gets ”amplified” by the PCR processus.

For our computer-simulated PCR experiment, we’ll use the small library of
primer pairs stored in the plate1_probes.txt file. This library can be loaded
into a data frame with:

> probes <- read.table("plate1_probes.txt", stringsAsFactors = FALSE)

> dim(probes)

[1] 95 2

> probes[1:5,]

Fprobe Rprobe
plate1_A02 GAGACCACCGCCGCAACTGAAG GAGACCACCGCCGCAACTGAAG
plate1_A03 AGCTCCGAGTTCCTGCAATA CGTTGTTCACAAATATGCGG
plate1_A04 ACCCAGCAAAAAGAAGAGCA AGCAGTTCGGACCTCTTGAA
plate1_A05 AGTTAAGGGCCTGTGGTGTG TACTGTTGTCGCGATTCAGC
plate1_A06 AGACGGTGGTGAACACATGA CTTTTCGAGAGTGGAGTCCG

We’ve put one primer pair per row in this data frame. The row names of
the data frame contain the primer pair ids. Also note that, as suggested by the
col names, we’ve only put the probe parts for each primer pair (the ”tag” part
has been removed, it can be ignored for the purpose of this exercise).

The first goal of this exercise is to write a function that, given a probe pair
and a subject (the PCR target), returns the amplicons associated with this
probe pair.

In order to acquire some expertise, we’ll try to find the amplicon(s) associated
with the following arbitrary probe pair:

> Fprobe0 <- DNAString("AGCTCCGAGTT")

> Rprobe0 <- DNAString("CGTTGTTCACA")

We choose short probes on purpose so the risk to have several hits in several
chromosome is high. This is a good way to learn how to deal in a systematical
way with the multi hit problem!

1. Find all Fprobe0 and Rprobe0 hits in chromosome 3R. Remember that
nothing prevents a probe to hit the strand that it was not designed for!
Put the start positions of all the ”plus hits” (i.e. the hits of Fprobe0 and
Rprobe0 in the plus strand) in the Phits object (integer vector). Put the
end positions of all the ”minus hits” in the Mhits object (integer vector).

10

2. Ideally Phits and Mhits should be of length 1 but it is not always the
case. However the fact that we get several ”plus hits” and/or ”minus hits”
doesn’t necessarily mean that our original primer pair has a bad design.
In fact, some of these hits don’t prevent the PCR experiment to work
properly: this is the case for any ”plus hit” that is followed (from left to
right) by another ”plus hit”with no ”minus hit” between. And similarly, it
is the case for a ”minus hit” that is preceded by another ”minus hit” with
no ”plus hit” between. All these hits can be ignored. Write a function
that takes 2 arguments, Phits and Mhits, that removes all the above hits.
The function will return a data frame with 2 columns, Phits and Mhits.
Note that using a data frame now makes sense because after this removal,
Phits and Mhits will always have the same length.

3. Use the previous function to ”clean” Phits and Mhits. Compare your re-
sult with the ”theoretical amplicons”returned by matchProbePair(Fprobe0,
Rprobe0, Dmelanogaster[["3R"]]). From now we will use the match-
ProbePair function to achive this. Are all these ”theoretical amplicons”
realistic (PCR amplification is supposed to work for regions up to 5k-
10k bases). Would you still consider the Fprobe0/Rprobe0 pair good for
amplifying the region it was designed for?

4. Another problem that can prevent the PCR amplification from working
properly is when a given primer pair produces more that 1 valid amplicon
(e.g. <= 20k) over the whole genome. What about Fprobe0/Rprobe0?

5. Write a function that takes our probes library (the probes data frame) as
input and produces a data frame similar to probes but with 3 additional
columns chr, start and end that contain the chromosome name/start/end
of the amplicon found for each primer pair or NAs if 0 or more than 1
amplicon were found. Having NAs in a row means that the design of the
primer pair is bad.

11

