

Analys is and annotat ion o f Af f ymetr ix exon arrays using B ioconductor and exonmap

B ioc 2008

Crispin J Miller
Cancer Research UK
Applied Computational Biology Group, Paterson Institute for Cancer Research, Manchester, UK

bioinformatics.picr.man.ac.uk

 2

Contents
Preamble ...3
Citing exonmap...3
Getting more information..3
Agenda..4
Introduction...5
Installation ..6

Configuration directory ...6
databases.txt ..6
db.local ...7

Initial preprocessing ..7
Filtering probesets based on expression...7

A note on FDR and multiple testing...9
Exploring known genes ...9
Filtering based on annotation... 10

Multi-target (cross-hybridizing) probesets ... 10
Behind the scenes .. 11

Mapping functions .. 12
Getting gene, exon and probeset data together... 12
Getting more information.. 13
A simple example.. 13
Strategies for partitioning the data... 13
More plots... 15
References .. 16

 3

Preamble
In this tutorial, we will consider how to use the Bioconductor package, exonmap, to help
interpret Affymetrix Exon array data.

Exonmap provides detailed probe-level annotation of Affymetrix Exon arrays against the
human genome, using data stored in the annotation database and genome browser, X:Map
(http://xmap.picr.man.ac.uk). X:Map contains mappings between individual probes (and
probesets) and the Ensembl build of the genome. Ensembl is then used to provide
mappings between these and the exons, transcripts and genes they target.

Citing exonmap
If you find exonmap useful in your work, please cite:

Okoniewski MJ, Yates T, Dibben S, Miller CJ. An annotation infrastructure for the
analysis and interpretation of Affymetrix exon array data. Genome Biol. 2007;8(5):R79.

and also Bioconductor:

Gentleman, R. C., V. J. Carey, et al. (2004). "Bioconductor: open software development
for computational biology and bioinformatics." Genome Biol 5(10): R80.

The following describes X:Map in more detail:

Yates T, Okoniewski MJ, Miller CJ. X:Map: annotation and visualization of genome
structure for Affymetrix exon array analysis. Nucleic Acids Res. 2008 Jan;36 (Database
issue):D780-6.

Getting more information
Every function in exonmap has a manual page that can be viewed by typing either
help(<function-name>), or ?<function-name>.

In addition, the package has a vignette: to get at this, type openVignette().

For more detailed installation instructions, see INSTALL.txt in the subdirectory inst/doc/
in package download.

 4

Agenda

INTRODUCTION

 What are exon arrays?

 What are the challenges?

 How does exonmap approach them?

FIRST STEPS

 Package installation and configuration

 Normalizing and pre-processing

FILTERING PROBESETS – 1

 Identifying significant genes

EXPLORING KNOWN GENES OF INTEREST

 Plotting and visualizing data

BREAK

FILTERING PROBESETS – 2

 Cross hybridizing probesets

 Exonic, intronic, intergenic targeting probesets

MAPPING DATA

 X.to.Y functions

 ESTs, Genescan predictions

SPLICING INDEX

PUTTING IT ALL TOGETHER

 A worked example

PLOTS AND VISUALIZATIONS

 X:MapBridge

 5

Introduction
Exon arrays differ from most other microarrays because they feature multiple probesets
per transcript: the aim is to target every known and predicted exon in the entire genome
with its own individual probeset. This presents a number of challenges, due to the
complexity and coverage of the arrays (discussed in e.g. [1-4]).

For a start, since each array contains about 6 million probes, initial normalization and
preprocessing can take time and/or significant memory. A number of R and Bioconductor
packages exist to make this job easier for large arrays, including XPS, aroma.affymetrix
and oligo. An alternative is to use the Affymetrix Power Tools (APT) software from by
Affymetrix to generate a tab delimited output file, and then to load this into Bioconductor
for further analysis. This is also useful if you are going to be using detection calls as part
of your analysis.

For this tutorial, as you will see below, we will start with an already preprocessed
ExpressionSet. This is a comparison between two cell lines, MCF7 (breast tumour
derived) and MCF10A (normal epithelial). It is described in more detail in [2].

Another challenge arises from the increasing amount of detailed annotation required to
interpret the arrays. Since each probeset reports on a fragment of a transcript (or multiple
transcripts, if they share overlapping exons) it is no longer sufficient simply to provide a
simple mapping between transcript or gene identifier; more fine grained mappings are
required to place each probeset against their target sequence and to locate them relative to
their target exons. In addition, some probesets contain probes capable of targeting
multiple sites in the transcribed genome. It is useful to be aware of these, since their
signal is potentially influenced by a number of alternate transcripts, and generally to filter
them out of the data prior to analysis.

The strategy taken with X:Map is to first map each probe to the entire genome sequence
(we do this because there is substantial transcription outside known genes), and to record
these hits in a relational database. These database tables are associated with a local copy
of Ensembl [5] and stored procedures are used to provide a clean API against which to
program (and also for speed). The exonmap package then makes these data available in
Bioconductor [6].

 6

Installation

Configuration directory
Exonmap needs access to an installation of the X:Map database. This can be installed
locally on the same machine running R, or on a separate database server and connected to
remotely. We will not go into details about the X:Map installation here – this is described
within the database installation instructions which can be found within the database
tarballs at http://xmap.picr.man.ac.uk/download, but we will instead focus on the
exonmap configuration and setup.

Exonmap makes use of a local config directory in which it stores a number of relatively
small cache files, and also looks in to find out how to connect to X:Map.

The location of the config directory should be specified by the environment variable
R_XMAP_CONF_DIR.

Although it is possible to do this during your R session:

> Sys.setenv(R_XMAP_CONF_DIR=”~/.exonmap”)
> library(exonmap)

this is not ideal, and you will almost certainly want to set this up permanently. How this
is done is platform specific, and may well also depend on how your local systems’
administrator prefers to configure your machine. For this reason, details will vary and
you should contact your local expert if in doubt.

If exonmap can’t find the R_XMAP_CONF_DIR environment variable, it will complain
with a warning and will try to find a directory called .exonmap in your home directory.

databases.txt
Exonmap uses a file, databases.txt, in the config directory to specify what instances of
the X:Map database are available. This is described in detail in the package installation
instructions, and a sample file is provided as part of the tutorial. X:Map can support
multiple versions of the same database, useful when working on a number of projects at
once - it is possible to have an older version of the database to support work on an
ongoing paper will also offering the most recent version to support a newer project.

It is also possible to offer access to different servers all providing the same database
version. This is useful for example if you want to have a local installation on a laptop, but
also to be able to access a more powerful database server when connected to a network.

Note that this differs from previous versions of the package.

 7

db.local
If the directory db.local exists within the config directory, exonmap will try to build a
small local data file that supports its filtering functions. There will be one file per
database, and it is placed within the db.local directory. Use of this data makes large
filtering queries run many times faster. It is almost certainly a good idea to create
db.local. A file for each database version will be created, and these files will persist
between sessions.

To check everything is OK:

library(exonmap)
xmapConnect()
symbol.to.gene("TP53")

Initial preprocessing
We will not go into much detail about preprocessing here, since exonmap focuses mainly
on aspects further down the analysis pipeline. Instead we will make use of some already
RMA[7] processed expression data in the file “mcf7.mcf10a.R” provided with this
tutorial.
(We will avoid processing the data here).

This was produced using the following:

> library(exonmap)
> raw.data <- read.exon()
> raw.data@cdfName <- “exon.pmcdf”
> x <- rma(raw.data)

read.exon loads exon data from the current local directory, and makes use of a
whitespace delimited file (by default called ‘covdesc’) to define which arrays to read, and
also to provide additional annotation data. This is described in more detail in the package
vignette, but is, essentially, a column of cel file names, followed by one or more columns
corresponding to experimental factors (each with a heading). These end up in the
resultant eSet’s annotation slot:
(Before running this make sure you are in the tutorial directory by using setwd("<dir>").)

library(exonmap)
load("mcf7.mcf10a.R")
pData(x)

Note also that we are explicitly setting the cdfName of the ExpressionSet. This is to make
use of a custom CDF environment that contains only the pm probes on the array – it can
be downloaded from http://xmap.picr.man.ac.uk.

Filtering probesets based on expression
The approach we take with exonmap is to try to use as many of the existing strategies and
algorithms for dealing with expression arrays as possible. Thus we normalize, preprocess
and filter the probesets on the array in order to generate a list of ‘interesting’ probesets.

 8

Typically these will be both statistically significant, and have a reasonable level of
change between sample groups, correlations, etc. The fundamental point is that at this
stage, we are not treating the arrays as any different from any other type of Affymetrix
array.

Exonmap provides some simple utility functions (written mainly to make it easier to
provide documentation and examples) that provide pairwise comparisons between two
sets of arrays. We will use them here to generate a list of probesets to explore during this
tutorial:

r <- pc(x,"group",c("a","b"))
plot(fc(r),log10(tt(r)),pch=20)
keep <- (abs(fc(r)) > 4) & (tt(r) < 0.001)
ps <- names(fc(r))[keep]
length(ps)
ps[1:100]

You will almost certainly want to substitute a more sophisticated analysis here – for
example, you might want to use limma to generate a list using FDR moderated p-scores:

> library(limma)

pairwise <- function(x,group,gp1,gp2,fc=log2(1),p.value=0.001) {
 pd <- pData(x)
 grp <- pd[, colnames(pd) == group]
 c1 <- grp == gp1
 c2 <- grp == gp2
 design <- as.matrix(cbind(as.numeric(c1),as.numeric(c2)))
 colnames(design) <- c(gp1,gp2)
 fit <- lmFit(x,design)
 ct <- paste(gp1,"-",gp2,sep="")
 cont.matrix <- makeContrasts(contrasts=ct,levels=design)
 fit2 <- contrasts.fit(fit,cont.matrix)
 fit2 <- eBayes(fit2)
 result <- decideTests(fit2,lfc=fc,p.value=p.value)
 keep <- result@".Data" != 0
 r <- cbind(p.adjust(fit2$"p.value"[keep]),fit2$"coeff"[keep])
 rownames(r) <- names(result@".Data"[keep,])
 colnames(r) <- c("adj.p.value","fold.change")
 r
}

topN <- function(x,N=20,type=c("both","up","down")) {
 type <- match.arg(type)
 i <- 1:dim(x)[1]
 o <- order(x[,2],decreasing=T)
 i <- i[o]

 if(type == "both") N <- floor(N/2)
 u <- i[1:N]
 d <- i[length(i)- N + 1:N]
 keep <- switch(type,
 both=c(u,d),
 up=u,
 down=d)
 x[keep,,drop=FALSE]
}

 9

r <- pairwise(x,"group","a","b",fc=4)
ps.2 <- rownames(r)

(Not surprisingly, at this fold change threshold – 16-fold, this gives very similar results to
the unadjusted comparison above).

A note on FDR and multiple testing
One of the issues with exon arrays is that the large amount of probesets means that many
apparently significant probesets can be generated simply by chance. The alternative, of
making the significance threshold more significant (either explicitly, or via an FDR or
multiple testing correction approach) has the disadvantage of losing additional True
Positives.

The strategy we use here, of first finding significant probesets and then mapping to genes,
makes this less of an issue than it might appear at first instance (see below), however, it is
also sometimes possible to restrict the analysis to a smaller set of more relevant probesets
in the first place.

Approximately 50% of the probesets on an exon array target outside known protein
coding exons, and if you know that downstream analysis is likely to focus only on the
well-characterized genes in the genome, it might be appropriate to ignore all these
additional probesets from the outset. The filtering functions described in the section
'Filtering based on annotation' can help with this.

Exploring known genes
At this point, we have a list of significant probesets, identified by a simple pairwise
comparison between replicate groups. In the next section we will begin to explore these
in more detail, but generally, we already have a number of genes likely to be of interest in
a given experiment. Exonmap can be used to generate plots of these genes directly:

library(exonmap)
xmapConnect()
g <- symbol.to.gene("TP53")
gene.graph(g,x,gps=list(1,2,3,4,5,6),gp.col=c("red","red","red","orange","orang
e","orange"))

When you run this, xmapConnect() will prompt you to choose a database to connect to –
if you already know which one, you can specify it directly (e.g. xmapConnect("human")
), and you will not be presented with a menu.

The function symbol.to.gene() then connects to the database and retrieves the gene
identifier(s) that map to the specified symbol(s). This is our first use of exonmap and a
fair amount is going on in the background; the aim is to hide all the database connectivity
and so on from the user and present as simple an interface as possible.

Finally, gene.graph() again uses exonmap to find the intron/exon structure of the
specified gene and the probesets that target it, and then uses this information to plot the
expression data for that gene.

 10

A selection of different plot functions exist; we will return to plotting later on.

Filtering based on annotation
Affymetrix have placed probes on the array with a variety of levels of confidence based
on the amount of supporting experimental evidence (Affymetrix refer to these as
groupings as 'core', 'extended' and 'full'). In many cases we are most interested in changes
to the most well-characterized exons within the dataset – changes to intergenic or intronic
probesets while potentially interesting are probably harder to deal with and we may wish
to leave these to later.

Exonmap provides a set of filtering functions to partition a probeset list based on the
region of the genome they target:

e <- exonic(ps)

will return a list containing only exon targeting probesets. Similarly,

i <- intronic(ps)
ig <- intergenic(ps)

will filter for intronic and integenic probesets, respectively.

Note that by default these functions will also remove multi-targeted probesets (see
below).

Multi-target (cross-hybridizing) probesets
An important aspect of high-density arrays is that occasionally some probes can hybridize
to multiple places in the transcribed genome. This issue is becoming even more
prominent as increasing amounts of transcription are being found outside known protein
coding regions. For this reason, X:Map was built by searching against the entire genome
(rather than just known transcripts) and recording the locations where each probe
matches. The function multitarget() makes it possible to identify any probesets that are
found to hit at more than one location:

multitarget(ps)

All these functions can take the parameter exclude=FALSE, in which case they return
anything that doesn't match the criterion, so for example,

multitarget(ps,exclude=TRUE)

will return any probesets that aren't multi-targeted.

We can also test probesets based on annotation – i.e. the following functions exist, and
should be self-explanatory:

 11

is.exonic(ps)
is.intronic(ps)
is.intergenic(ps)
is.multitarget(ps)

The functions:

select.probewise(ps,"exonic") # or intronic, intergenic, multitarget
exclude.probewise(ps,"exonic") # or intronic, intergenic, multitarget

also exist, and provide an alternative way of getting at the same functionality.

Behind the scenes
The function probeset.stats() reveals a little bit more about how all of this is
implemented:

probeset.stats(ps[40:50])

 probeset_id probeset hitScore exonScore geneScore
40 17795 2336556 1 1 1
41 17797 2336558 1 1 1
42 17799 2336560 1 1 1
43 17805 2336566 1 4 1
44 18471 2337413 150 0 0
45 19635 2338842 1 0 1
46 20443 2339802 1 1 1
47 20452 2339811 1 1 1
48 20455 2339814 1 1 1
49 20469 2339828 1 4 1
50 20554 2339932 1 1 1
>

X:Map stores a hit table for each probeset, that scores each probeset according to the
number of genome, exon and gene hits it has (hitScore, exonScore and geneScore,
respectively). These are calculated by multiplying the scores for each individual probe
within a probeset together. This means that:

• If a probeset hits the genome once, and only once, with each of its probes, the
hitScore will be 1 * 1 * 1 *1 = 1.

• If one or more of its probes doesn't hit the genome, the hitScore will be 0.
• If all probes hit at least once, but one or more hit more than once, the hitScore

will be > 1.
thus, probeset #44 is multitarget (and intronic), #40 is exonic, and #45 is intronic. Exon
and gene scores are calculated similarly. The scores are computed this way because they
can be done quickly on the database server in SQL – and they provide a quick way of
filtering the data:

• Multi-target: hitScore > 0
• Exonic: exonScore > 0
• Intronic: exonScore ==0 & geneScore > 0

Happily, this is hidden from the user; in most cases it is not necessary to think about…

 12

Mapping functions
As well as filtering to include or exclude probesets from a list based on where they hit the
genome, it is also possible to map between probes, probesets and their target genes, exons
and transcripts. For example,

ex <- probeset.to.exon(e[1:100])
ex

will take the first 100 probesets in our probeset list and return the exons they target
(remember, e is the vector of exonic targeting probesets we created in the previous
section). Similar functions exist for transcripts and genes:

tr <- probeset.to.transcript(e[1:100])
g <- probeset.to.gene(e[1:100])

…and also for mapping between levels:

exon.to.transcript(ex)
transcript.to.gene(tr)

We can also map back in the opposite direction – in fact the functions are all of the form
x.to.y. Thus we have:

probe.to.probeset, probeset.to.probe
probeset.to.exon, probeset.to.transcript, probeset.to.gene
exon.to.probeset, exon.to.transcript, exon.to.gene
transcript.to.probeset, transcript.to.exon, transcript.to.gene
gene.to.probeset, gene.to.exon, gene.to.transcript

All these functions take the parameter as.vector, which is TRUE by default. If FALSE,
then a data.frame is returned with some additional annotation data besides the database
identifier. Each of these functions also has a parameter, unique. When TRUE (as it is by
default) duplicate entries will be removed from the results.

Finally, the function symbol.to.gene (seen above in the first graph example) provides a
translation between gene symbols and Ensembl IDs.

Note that probeset.to.probe, by default, strips our multitarget probesets. This is because a
small number of probesets contain probes that hit the genome at a large number of sites.
This can result in extremely large tables coming back from the database, and can be slow.
Since in most cases these probesets aren't interesting or useful, we filter them out by
default.

Getting gene, exon and probeset data together
Often, we want to compute some overall statistics for a gene (such as the splicing index,
see below). To do this we need to know details about both its constituent exons and its
target probesets and we want to put these together alongside our expression data. The

 13

functions gene.to.exon.probeset and gene.to.exon.probeset.expr do this in one go. They
do most of their work on the database server, making them relatively fast.

gene.to.exon.probeset(g[1:2])
gene.to.exon.probeset.expr(x,g[1:2])

Getting more information
The functions gene.details, transcript.details and exon.details each give additional
annotation data.

gene.details(g)

Note that probeset.details does not exist, since a probeset is little more than a name with
which to group a set of probes together. The function probeset.to.probe with
as.vector=FALSE will produce a table of individual probe hit-locations for the specified
probeset(s).

Range queries
X:Map also supports queries to find out which genes/transcripts/exons are located in a
particular region of the genome:

genes.in.range(7400000,7600000,1,"17")
transcripts.in.range(7400000,7600000,1,"17")
probesets.in.range(7400000,7600000,1,"17")

A simple example
We are now in a position to generate a gene list from our example cell line data. Each
entry will correspond to a gene where at least one, non-multitarget, exon targeting
probeset is found to be statistically significant and differentially expressed.

We will use the simple pairwise comparison for this, but we could (and should) of course
use a more statistically robust approach.

library(exonmap)
xmapConnect()
load("mcf7.mcf10a.R")
r <- pc(x,"group",c("a","b"))
keep <- (abs(fc(r)) > 4) & (tt(r) < 0.001)
ps <- names(fc(r))[keep]

ps <- exonic(ps) # also gets rid of multi-targeted probesets
g <- probeset.to.gene(ps)
gds <- gene.details(g)

Strategies for partitioning the data
This produces a list with about ~880 genes in it. While useful, clearly we will want to do
some more analysis to partition this list further. One simple approach is simply to divide

 14

the data according to the variance across each gene. We already know that at least one
exon in each gene in the list has at least a 24-fold difference in expression, so genes from
this list with low variance in their fold-changes have large and consistent changes across
their exons.

gepe <- gene.to.exon.probeset.expr(x,g[1:100]) #just do 100 genes
fc.var <- function(g) {
 fcs <- apply(g,1,function(a) {
 mean(as.numeric(a[1:3])) - mean(as.numeric(a[4:6]))
 })
 var(fcs)
}

l <- split(gepe,gepe$"gene")
vs <- sapply(l,fc.var)
o <- order(vs,decreasing=FALSE)
g.ordered <- names(l)[o]

We can generate a summary plot for a set of genes using the gene.strip function. This is
similar to a heatmap, with each row corresponding to a gene, and genes are plotted in
exon order and coloured by, for example, fold change. Here we look at the 40 least
varying genes:

gene.strip(g.ordered[1:40],x,list(1:3,4:6),type="mean-fc")

… and the 40 most varying:

gene.strip(rev(g.ordered)[1:40],x,list(1:3,4:6),type="mean-fc")

An alternate way of partitioning the data is to use the splicing index. This is described in
the Affymetrix whitepaper 'Alternative transcript analysis methods for exon arrays' [8].

s <- si(x,g,list(1:3,4:6))

si returns a list, one element for each gene. Each entry in the list is a data.frame with the
splicing index for each (exon targeting) probeset, its accompanying p-value and the gene
level average. We can partition the data into two groups – genes that are, on average, up-
regulated, and those that are down-, and then sort the genes within these two groups
according to the maximum splicing index. Finally, we plot the results.

 15

keep <- intersect(names(s),g)
s <- s[keep]
max.si <- sapply(s, function(a) {
 max(abs(a$si))
})

gene.av <- sapply(s, function(a) {
 max(a$gene.av)
})

up<-gene.av>0

o<-order(max.si[up],decreasing=TRUE)
gene.strip(g[up][o[1:40]],x,list(1:3,4:6),type="mean-fc",
main="up",probes.min=0)

o<-order(max.si[!up],decreasing=TRUE)
gene.strip(g[!up][o[1:40]],x,list(1:3,4:6),type="mean-fc",
main="down",probes.min=0)

More plots
We can also plot genes to show their gene structure:

plotGene("ENSG00000151914",x,list(1:3,4:6),
 type="mean-fc", main="up",probes.min=0)

Note that both plotGene and plot.graph allow their xlim to be specified, allowing you to
zoom in to a particular region of a gene. This allows you to see the location of each
individual probe within a probeset.

A mechanism has also been developed for exporting data from X:Map and displaying it
directly in the X:Map browser. This is still under development but will be released
shortly.
 (The first two parameters are the start and end points of the region, then the strand
(forward: 1 ; reverse: -1).

 16

References
1. Abdueva D, Wing MR, Schaub B, Triche TJ: Experimental comparison and

evaluation of the Affymetrix exon and U133Plus2 GeneChip arrays. PLoS
ONE 2007, 2(9):e913.

2. Okoniewski MJ, Hey Y, Pepper SD, Miller CJ: High correspondence between
Affymetrix exon and standard expression arrays. Biotechniques 2007,
42(2):181-185.

3. Okoniewski MJ, Yates T, Dibben S, Miller CJ: An annotation infrastructure
for the analysis and interpretation of Affymetrix exon array data. Genome
Biol 2007, 8(5):R79.

4. Yates T, Okoniewski MJ, Miller CJ: X:Map: annotation and visualization of
genome structure for Affymetrix exon array analysis. Nucleic Acids Res 2008,
36(Database issue):D780-786.

5. Flicek P, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, Clarke L, Coates
G, Cunningham F, Cutts T et al: Ensembl 2008. Nucleic Acids Res 2008,
36(Database issue):D707-714.

6. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B,
Gautier L, Ge Y, Gentry J et al: Bioconductor: open software development for
computational biology and bioinformatics. Genome Biol 2004, 5(10):R80.

7. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U,
Speed TP: Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics 2003, 4(2):249-264.

8. Affymetrix: Alternative transcript analysis methods for exon array
analysis. Affymetrix whitepaper 2007.

