
flowCore: data structures package for the analysis of flow cytometry data

N. Le Meur F. Hahne D. Sarkar B. Ellis P. Haaland

March 28, 2008

1 Introduction

Traditionally, flow cytometry (FCM) has been a tube-based technique limited to small-scale laboratory studies.
High throughput methods have recently been developed and are now used in both basic and clinical research.
The large amount of information generated by such high throughput technologies must be stored, managed, and
needs to be summarized in order to make it accessible to the researcher. The open source statistical software R in
conjunction with the Bioconductor Project can play an important role in this new paradigm by providing a unified
research platform which bioinformaticians, computer scientists, and statisticians can use to develop standard or
novel methods.

In this lab we will learn how to use the flowCore package. Is has been developed to handle the main steps
of importing, storing, assessing and preprocessing data from FCM experiments. During this practical session, we
will learn how to access and manipulate flow cytometry data, focusing on the data structures to store, transform
and filter (gate) FCM data. We will also use some quality assessment and visualization tools that are built upon
the flowCore package and its object model, specifically those in the flowViz package.

2 Reading and exploring the data

2.1 Reading single files: the flowFrame object

Flow cytometry data files are read into the R environment via the read.FCS function. FCS files (version 2.0 and
3.0) and LMD (List Mode Data) extensions are currently supported. The result of this operation is an object of
class flowFrame, the basic unit of storage for flow data in flowCore.

Exercise 1
Read in a file using the read.FCS function as object fcs1. You should have sample FCS files available in the data/

folder in your wokring directory. You could also import your own files if you want to, but we will be using the files
in data/ for later examples.

Solution:

1

> library(flowCore)

> myfile <- "data/a01"

> fcs1 <- read.FCS(myfile)

> fcs1

flowFrame object 'A01' with 2205 cells and 8 observables:
name desc range minRange maxRange

$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023
$P3 FL1-H CD15 FITC 1024 1 10000
$P4 FL2-H CD45 PE 1024 1 10000
$P5 FL3-H CD14 PerCP 1024 1 10000
$P6 FL2-A <NA> 1024 0 1023
$P7 FL4-H CD33 APC 1024 1 10000
$P8 Time Time (102.40 sec.) 1024 0 1023

slot 'description' has 150 elements

The primary elements of a flowFrame object are the exprs and parameters slots, which contain the event-
level information (as a numeric matrix), and metadata describing the measurement channels, respectively. The
parameters slot holds an AnnotatedDataFrame object that contains annotated information derived from an FCS
file’s $P<n> keywords about the detectors and stains used. Also, you can find out about the dynamic range of
the measurement instrument for each channel. The range method of a flowFame will access the parameters slot,
rather then returning the actual range of the raw data. Additional information regarding the parameters can be
provided by the user and you should consult the documentation for AnnotatedDataFrame for details. Remember
that you can get a table of values for an AnnotatedDataFrame using the pData function, and descriptions of each
variable via the varMetadata function.

Exercise 2
Use the exprs and parameters methods to explore your data. These are accessor methods, and you will soon find
out that such mehtods exist for most of the features in flowCore’s classes. (Hint: you might want to subset the
raw data matrix or use the function head to avoid all events being displayed, which might take quite a while).
Finally apply the summary method on the flowFrame to get the summary statistics of the measurements in each
channel.

Solution:

> exprs(fcs1)[1:3,]

> head(fcs1)

> parameters(fcs1)

> pData(parameters(fcs1))

> summary(fcs1)

The keyword method allows access to the raw FCS keywords, which are a mix of standard entries such as
“SAMPLE ID”, vendor specific keywords, and user-defined keywords, that add more information about an experi-
ment. For example, when acquiring flow data, the amplification information for parameters (channels) is stored in
the amplification keyword mentioned before, which is part of the standard FCS definition, in the form a× 10x/R.
Use either keyword without any additional arguments or, alternatively, the description function to get a list of
all available keywords. The latter also lets you hide the FCS-internal keywords that start with a $ sign via the
hideInternal argument. You can add you own keywords as a named list using one of the respective replacement
functions.

2

Exercise 3
Use the keyword function to explore the amplification parameter (these have names of the form $P<n>E). Add your
own keyword ”foo” with the value ”bar” using keyword’s replacement method. There is one keyword that encodes
the patient ID. Can you find it?

Solution:

> names(description(fcs1, hideInternal=TRUE))

> keyword(fcs1, c("$P1E", "$P2E", "$P3E", "$P4E"))

> keyword(fcs1) <- list(foo="bar")

> keyword(fcs1, "foo")

> keyword(fcs1, "&10Patient ID")

The read.FCS function has a transformation argument. The default linearize transformation option will
convert the value of these channels to have a "$P<n>E" of "0,0". The scale option will both linearize values as well
as ensure that they are in the range [0, 1], which is the proposed method of data storage for the ACS1.0/FCS4.0
specification (Spidlen et al., 2006).

Exercise 4
Read in a file using the read.FCS function with different options for the transformation argument. Compare the
results.

Solution:

> fcs1 <- read.FCS(myfile, transformation = "linearize")

> summary(fcs1)

> fcs2 <- read.FCS(myfile, transformation = "scale")

> summary(fcs2)

Another argument of interest in read.FCS is alter.names, which will convert the parameter names into more
“R friendly” equivalents, e.g., by replacing “FSC-H” with “FCS.H”:

> read.FCS(file.name, alter.names = TRUE)

For many of the downstream applications this is very useful, since you don’t need to quote variable names.

2.2 Visualizing a flowFrame

flowCore implements some basic plotting facilities using the standard plot function. The default plot for a
flowFrame without further arguments is a simple pairs density plot containing all available channels.

> plot(fcs1)

While such a plot can give a quick overview, it is not really helpful to inspect the details of the data. You can
create individual bivariate density plots (or scatter plots if you prefer to look at those) by supplying the names of
the parameters to plot as an additional argument.

> plot(fcs1, c("FSC-H", "SSC-H"))

Exercise 5
Create a similar plot of two other parameters. Take a look at the optional smooth argument. What does it do?

3

Scatter Plot Matrix

FSC−H

SSC−H

FL1−H

FL2−H

FL3−H

FL2−A

FL4−H

Figure 1: A pairs plot of all parameters in a flowFrame

4

200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

FSC−H

S
S

C
−

H

Figure 2: A bivariate density plot of the FSC and SSC parameters in a flowFrame

Solution:

> plot(fcs1, c("FL3-H", "FL4-H"))

> plot(fcs1, c("FL3-H", "FL4-H"), smooth=FALSE)

Univariate histograms can be produced by supplying one parameter name.

> plot(fcs1, c("SSC-H"), breaks=256)

More sophisticated visualization of FCM data is implemented in the flowViz package, which we will talk about
after introducing the flowSet class.

2.3 The flowSet Class

Most experiments generate multiple FCS files, which can be organized using the flowSet class. This class provides a
mechanism for efficiently hosting multiple flowFrame objects with minimal copying, reducing memory requirements,
as well as ensuring that experimental metadata stays properly associated to the appropriate flowFrame objects. A
flowSet object can be created by reading in a set of FCS files using the read.flowSet function. You should take a
look at its documentation to find out about the multiple possibilities of data import. As an example, we will read
a subset of data from Rizzieri et al. (2007) (available to you in the data/ directory), and we identify FCS files by
the pattern of their file names:

> ffiles <- list.files("data", pattern = "^[a-h]")

> fset <- read.flowSet(ffiles, path = "data")

> fset

A flowSet with 96 experiments.

column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time

5

Histogram of values

SSC−H

F
re

qu
en

cy

0 200 400 600 800 1000

0
50

10
0

15
0

Figure 3: A histogram of SSC parameter in a flowFrame

The whole dataset originated from a collection of weekly peripheral blood samples obtained from several patients
following allogenic blood and marrow transplant. The goal of this study was to identify cellular markers that would
predict the development of Graft vs Host Disease (GvHD). Samples were taken at various time points before and
after transplantation. At each time point, every patient blood sample was divided into eight aliquots. Each aliquot
was labeled with four different fluorescent markers and their fluorescent intensity determined, in addition to the
usual Forward and Side scatter measurements. In this lab we will focus on the measurements from 1 patient, which
corresponds to a single 96-well microtitre plate.

2.4 Working with experimental meta-data

Like most Bioconductor organizational classes, the flowSet has an associated AnnotatedDataFrame that provides
metadata not contained within the flowFrame objects themselves. This data frame is accessed and modified via
the usual phenoData and phenoData<- methods. Our data corresponds to one particular transplant patient. The as-
sociated phenotypic data (aliquots and time in days past transplant) are available in the file data/phenodata.txt.
You might want to inspect this file using a spreadsheet software like Excel to find out about its structure. We can
read it in and create an AnnotatedDataFrame object using

> pdata <- read.AnnotatedDataFrame("data/phenodata.txt")

> phenoData(fset) <- pdata

> fset

A flowSet with 96 experiments.

An object of class "AnnotatedDataFrame"
rowNames: a01, a02, ..., h12 (96 total)
varLabels and varMetadata description:
aliquot: Sample aliquot
time: Days Past Transplant

6

column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time

Each frame has a unique identifier which can be accessed using the function sampleNames.

> sampleNames(fset)

[1] "a01" "a02" "a03" "a04" "a05" "a06" "a07" "a08" "a09" "a10" "a11" "a12"
[13] "b01" "b02" "b03" "b04" "b05" "b06" "b07" "b08" "b09" "b10" "b11" "b12"
[25] "c01" "c02" "c03" "c04" "c05" "c06" "c07" "c08" "c09" "c10" "c11" "c12"
[37] "d01" "d02" "d03" "d04" "d05" "d06" "d07" "d08" "d09" "d10" "d11" "d12"
[49] "e01" "e02" "e03" "e04" "e05" "e06" "e07" "e08" "e09" "e10" "e11" "e12"
[61] "f01" "f02" "f03" "f04" "f05" "f06" "f07" "f08" "f09" "f10" "f11" "f12"
[73] "g01" "g02" "g03" "g04" "g05" "g06" "g07" "g08" "g09" "g10" "g11" "g12"
[85] "h01" "h02" "h03" "h04" "h05" "h06" "h07" "h08" "h09" "h10" "h11" "h12"

Exercise 6
It would be useful to add the patient ID you found before in the FCS keywords and which is the same for all
samples in the flowSet along with the well ID (which is encoded in the sample names) to the metadata. (Hint: use
the replacement functions for pData and varMetadata). Note that you first have to extract the AnnotatedDataFrame
from the flowSet to be able to edit it. After you are done, you should get something like

> fset

A flowSet with 96 experiments.

An object of class "AnnotatedDataFrame"

rowNames: a01, a02, ..., h12 (96 total)

varLabels and varMetadata description:

aliquot: Sample aliquot

time: Days Past Transplant

patient: Patient ID

well: Well ID

column names:

FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time

Solution:

> pd <- phenoData(fset)

> pData(pd)$patient <- keyword(fcs1, "&10Patient ID")

> pData(pd)$well <- sampleNames(fset)

> varMetadata(pd)[c("patient", "well"), "labelDescription"] <- c("Patient ID",

"Well ID")

> phenoData(fset) <- pd

2.5 Manipulating a flowSet

It is possible to extract a flowFrame from a flowSet object using a list-like syntax:

7

> fset$"a01"

flowFrame object 'A01' with 2205 cells and 8 observables:
name desc range minRange maxRange

$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023
$P3 FL1-H CD15 FITC 1024 1 10000
$P4 FL2-H CD45 PE 1024 1 10000
$P5 FL3-H CD14 PerCP 1024 1 10000
$P6 FL2-A <NA> 1024 0 1023
$P7 FL4-H CD33 APC 1024 1 10000
$P8 Time Time (102.40 sec.) 1024 0 1023

slot 'description' has 150 elements

> fset[[1]]

flowFrame object 'A01' with 2205 cells and 8 observables:
name desc range minRange maxRange

$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023
$P3 FL1-H CD15 FITC 1024 1 10000
$P4 FL2-H CD45 PE 1024 1 10000
$P5 FL3-H CD14 PerCP 1024 1 10000
$P6 FL2-A <NA> 1024 0 1023
$P7 FL4-H CD33 APC 1024 1 10000
$P8 Time Time (102.40 sec.) 1024 0 1023

slot 'description' has 150 elements

Again analogous to lists, we can subset a flowSet via the single colon operator:

> fset[1:3]

A flowSet with 3 experiments.

An object of class "AnnotatedDataFrame"
rowNames: a01, a02, a03
varLabels and varMetadata description:
aliquot: Sample aliquot
time: Days Past Transplant
patient: Patient ID
well: Well ID

column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time

> fset[c("a01", "b03")]

8

A flowSet with 2 experiments.

An object of class "AnnotatedDataFrame"
rowNames: a01, b03
varLabels and varMetadata description:
aliquot: Sample aliquot
time: Days Past Transplant
patient: Patient ID
well: Well ID

column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time

There is also an iterator method fsApply that can be used to apply an arbitrary function on all components of
a flowSet . It behaves much like lapply, except that by default, if all of the return values are flowFrame objects,
fsApply will create a new flowSet object to hold them. Moreover, the user can control whether the function should
operate on the individual flowFrames or on the raw data matrix of each frame.

Exercise 7
Compute the interquartile range (using IQR) for each parameter of each flowFrame in fset. Hint: look at
help(fsApply) and help(each_col).

Solution:

> fsApply(fset, each_col, IQR)

which is equivalent to the less readable

> fsApply(fset, function(x) apply(x, 2, IQR), use.exprs = TRUE)

3 Transformations

flowCore features two methods of transforming parameters within a flowFrame. One option is to use it in a
fashion similar to R’s transform function:

> summary(transform(fset[[1]], log.FL1.H = log(`FL1-H`),

"FL2-H"=log(`FL2-H`)))

FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time log.FL1.H
Min. 60.0 0.0 1.000 0.000 1.000 0.0 1.000 11.0 0.00000
1st Qu. 159.0 48.0 1.046 3.565 1.000 6.0 1.000 40.0 0.04502
Median 196.0 65.0 2.644 5.078 1.383 36.0 5.289 57.0 0.97240
Mean 220.8 108.9 57.540 4.591 7.367 48.7 16.240 51.9 1.52100
3rd Qu. 264.0 97.0 7.055 5.771 2.460 75.0 20.780 66.0 1.95400
Max. 1023.0 1023.0 3782.000 7.401 326.700 516.0 503.300 80.0 8.23800

This returns a new flowFrame (or flowSet) with additional (or modified) parameters. The other method is to
create a transformList object that represents an abstract transformation that can be subsequently applied to a
flowFrame or flowSet . This allows for a more convenient inline notation, but for the sake of code readability we
encourage using the first method.

9

> summary(transform("FL1-H" = log) %on% fset[[1]])

FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time
Min. 60.0 0.0 0.00000 1.00 1.000 0.0 1.000 11.0
1st Qu. 159.0 48.0 0.04502 35.35 1.000 6.0 1.000 40.0
Median 196.0 65.0 0.97240 160.40 1.383 36.0 5.289 57.0
Mean 220.8 108.9 1.52100 210.10 7.367 48.7 16.240 51.9
3rd Qu. 264.0 97.0 1.95400 320.90 2.460 75.0 20.780 66.0
Max. 1023.0 1023.0 8.23800 1637.00 326.700 516.0 503.300 80.0

Though any function can be used as a transform in both methods, flowCore provides a number of parameterized
transform generators that correspond to the transforms commonly found in flow cytometry and defined in the
Transformation Markup Language (Transformation-ML). A list can be seen by typing help("transform-class").
Transformations can be very useful for plotting (and for fitting the data driven filters we will see below). For
example, see Figure 4, which compares

> library(flowViz)

> splom(fset$h08[, 1:5])

and

> splom(transform("FSC-H" = asinh, "SSC-H" = asinh,

"FL1-H" = asinh, "FL2-H" = asinh,

"FL3-H" = asinh) %on% fset$h08[, 1:5])

To produce these plots we used the function splom from the flowViz package, and later in this tutorial we will see
more examples of that.

A tranformation can be applied to a complete flowSet just as it was applied to a flowFrame above.

Exercise 8
Create a new flowSet object called fset.trans that has your favorite transformation applied to all the channels.
We will use this in subsequent examples.

Solution:

> fset.trans <- transform(fset, "FL1-H"=asinh(`FL1-H`),

"FL2-H"=asinh(`FL2-H`),

"FL3-H"=asinh(`FL3-H`),

"FL2-A"=asinh(`FL2-A`),

"FL4-H"=asinh(`FL4-H`))

4 Quality assessment

flowViz provides several graphical methods that, among basic visual inspection of FCM data, can be used for
quality assessment. Much more sophisticated QA methods can be found in the flowQ package, but this is beyond
the scope of this introduction. One simple plot, the default xy.plot for a flowFrame, displays the fluorescence
intensities over time (Figure 5):

> xyplot(fset.trans[[1]])

10

Untransformed

Scatter Plot Matrix

FSC−H

SSC−H

FL1−H

FL2−H

FL3−H

asinh Transformed

Scatter Plot Matrix

FSC−H

SSC−H

FL1−H

FL2−H

FL3−H

Figure 4: Pairwise scatter plots of untransformed and transformed parameters

We can see that for this particular sample, the measurements are a bit odd at the beginning of the run but seem
to level off after some time. This is not uncommon for flow cytometry data as the fluidics often need some time
to stabilize.

Exercise 9
Try this for a few other samples. Can you find other samples that also look odd? How could this be explained?

In our example, the distribution of Forward Scatter and Side Scatter can also be used to detect unusual samples
(Figure 6) 1. flowViz is based on the lattice package, and the notation in the following code chunks makes use
of its somewhat unfamiliar formula interface. The interested user is refered to the documentation of the lattice
package to learn about the details. For now, it is sufficient to understand that the interface allows to arange
multiple plots according to one or several factors, and that is exactly what we need in order to visualize a whole
flowSet or a subset of several flowFrames.

> qqmath(~`FSC-H` | factor(time), fset.trans, groups = aliquot,

f.value = ppoints(500), type = "l")

Exercise 10
Which aliquot is the odd one out for time 46?

Solution:

1The other channels can not, since they have different dyes associated with them for different aliquots

11

Time

2
4
6
8

20 40 60 80

FL1−H
0
2
4
6

FL2−A
2
4
6
8

FL2−H
1
3
5

FL3−H
1
3
5
7

FL4−H
200
400
600
800

1000
FSC−H

0
200
400
600
800

1000
SSC−H

Figure 5: Parameter values over time in a flowFrame

qnorm

F
S

C
−

H

200

400

600

800

1000

−2 0 2

−8 0

−2 0 2

5 12

−2 0 2

19 27

32

−2 0 2

39 46

−2 0 2

53 60

−2 0 2

200

400

600

800

1000
67

Figure 6: Normal Q-Q plot of Forward Scatter in all frames in a flowSet

12

> qqmath(~`FSC-H` | aliquot, fset.trans, f.value = ppoints(500),

type = c("l", "g"), subset = (time == 46))

To get a quick comparison of the data in a flowSet for a single parameter, stacked density plots have shown to
be very useful. The following code produces the plot in 7.

> densityplot(factor(sampleNames(fset.trans))~ `FSC-H`, fset.trans,

subset=(aliquot == "A"),

scales = list(y = list(draw = F)))

FSC−H

200 400 600 800 1000

Figure 7: Stacked density plots for all frames in a flowSet

13

5 Filtering

The most common task in the analysis of flow cytometry data is usually some form of filtering operation, either to
obtain summary statistics about the number of events that meet a certain criteria or to perform further analysis
on a subset of the data.

5.1 Standard Filters

Most filtering operations are a composition of one or more common filtering operations. Like transformations,
flowCore includes a number of built-in common flow cytometry filters. The simplest of these filters are the
geometric filters, which correspond to those typically found in interactive flow cytometry software:

rectangleGate Describes a cubic shape in one or more dimensions–a rectangle in one dimension is simply an
interval gate.

polygonGate Describes an arbitrary two dimensional polygonal gate.

polytopeGate Describes a region that is the convex hull of the given points. This gate can exist in dimensions
higher than 2, unlike the polygonGate.

ellipsoidGate Describes an ellipsoidal region in two or more dimensions

These gates are all specified in more or less the same manner. For example,

> rectgate <- rectangleGate(filterId="Rectangle",

"FSC-H" = c(150, 450), "SSC-H" = c(25, 350))

> rectgate

Rectangular gate with dimensions:
FSC-H: (150,450)
SSC-H: (25,350)

creates a rectangular gate object, which can be applied to a flowFrame or flowSet .
Much more intersting are the additional data-driven filters not usually found in flow cytometry software:

norm2Filter A robust method for finding a region that most resembles a bivariate Normal distribution.

kmeansFilter Identifies populations based on a one dimensional k-means clustering operation. Allows the spec-
ification of multiple populations.

curv1Filter Identifies populations based on density estimation in one dimension. Allows the specification of
multiple populations.

curv2Filter Identifies populations based on density estimation in two dimensions. Allows the specification of
multiple populations.

For example,

> bvnormfilt <- norm2Filter(filterId = "BVNorm", "FSC-H", "SSC-H", scale=2)

> bvnormfilt

A filter named 'BVNorm'

can be used to gate for lymphocytes based on their FSC and SSC properties.

14

> curvfilt <- curv2Filter(filterId="curvature", "FL1-H", "FL3-H",

bwFac=2)

> curvfilt

A curv2 filter named 'curvature' with settings:
bwFac=2
gridsize=151,151

will identify high density region of significant curvature in the FL1-H and FL3-H channels and

> kmfilt <- kmeansFilter("kmfilt", "FSC-H" = c("Low", "High"))

> kmfilt

A k-means filter named ' kmfilt ': FSC-H (Low,High)

will separate the data in the two groups “High” and “Low” based on the FSC signal. In all these cases we have
constructed an abstract filter object which we can now apply to a particular data set to collect simple summary
statistics on the number and proportion of events considered to be contained within the gate or filter. This is done
using the filter method, and the output of this operation is an object of class filterResult . A filter can be applied
to an individual flowFrame as well as an entire flowSet , in which case it returns a list of filterResult objects:

> rectgate.results <- filter(fset.trans, rectgate)

> bvnormfilt.results <- filter(fset.trans, bvnormfilt)

> kmfilt.results <- filter(fset.trans, kmfilt)

> summary(rectgate.results[[1]])

Exercise 11
Produce a summary of kmfilt.results[[1]]. How can you obtain a summary for more than one frame at a
time?

Solution:

15

> summary(kmfilt.results[[1]])

Low: 1765 of 2205 (80.05%)
High: 440 of 2205 (19.95%)

> lapply(head(kmfilt.results, 4), summary)

$a01
Low: 1765 of 2205 (80.05%)
High: 440 of 2205 (19.95%)

$a02
Low: 11743 of 13350 (87.96%)
High: 1607 of 13350 (12.04%)

$a03
Low: 4600 of 11610 (39.62%)
High: 7010 of 11610 (60.38%)

$a04
Low: 4677 of 13830 (33.82%)
High: 9153 of 13830 (66.18%)

5.2 Subsetting and splitting

To subset or split a flowFrame or flowSet , we use the Subset and split methods, respectively. Subset can be used
for logical (TRUE/FALSE) filters, while split has to used for filters that detect multiple populations. Note that you
can also use split in combination with logical filter in case you want to keep both the populations within and
out of a gate for further analysis. For example, the bvnormfilt filter tries to detect a subregion that looks like a
bivariate normal distribution. If we wished to deal only with that subpopulation, we might use Subset as follows:

> smaller <- Subset(fset.trans, bvnormfilt)

> nrow(fset.trans[[1]])

[1] 2205

> nrow(smaller[[1]])

[1] 1660

Note how the smaller flowFrame objects contain fewer events.

Exercise 12
Use split to obtain subpopulations of smaller[[1]] defined by the kmfilt gate. In what form does split return
the results?

Solution:

16

> split(smaller[[1]], kmfilt)

$Low
flowFrame object 'A01' with 1074 cells and 8 observables:

name desc range minRange maxRange
$P1 FSC-H FSC-Height 1024 0.0000000 1023.000000
$P2 SSC-H SSC-Height 1024 0.0000000 1023.000000
$P3 FL1-H CD15 FITC 1024 0.8813736 9.903488
$P4 FL2-H CD45 PE 1024 0.8813736 9.903488
$P5 FL3-H CD14 PerCP 1024 0.8813736 9.903488
$P6 FL2-A <NA> 1024 0.0000000 7.623642
$P7 FL4-H CD33 APC 1024 0.8813736 9.903488
$P8 Time Time (102.40 sec.) 1024 0.0000000 1023.000000

slot 'description' has 150 elements

$High
flowFrame object 'A01' with 586 cells and 8 observables:

name desc range minRange maxRange
$P1 FSC-H FSC-Height 1024 0.0000000 1023.000000
$P2 SSC-H SSC-Height 1024 0.0000000 1023.000000
$P3 FL1-H CD15 FITC 1024 0.8813736 9.903488
$P4 FL2-H CD45 PE 1024 0.8813736 9.903488
$P5 FL3-H CD14 PerCP 1024 0.8813736 9.903488
$P6 FL2-A <NA> 1024 0.0000000 7.623642
$P7 FL4-H CD33 APC 1024 0.8813736 9.903488
$P8 Time Time (102.40 sec.) 1024 0.0000000 1023.000000

slot 'description' has 150 elements

5.3 Combinations of filters

Of course, most filtering operations consist of more than one gate. To combine gates and filters we use the standard
R Boolean operators: &, | and ! to construct intersections, unions and complements respectively:

> rectgate & bvnormfilt

A filter named 'Rectangle and BVNorm'

> rectgate | bvnormfilt

A filter named 'Rectangle or BVNorm'

> !bvnormfilt

A filter named 'not BVNorm'

Data driven filters such as norm2Filter do not always work out of the box; for instance if there is more than one
population, fitting a single distribution doesn’t make much sense (Figure 8 a). Note that in the next code chunk
we again use the plotting functionality provided by the flowViz package, and that we passed the filter object on
to xyplot in order to draw its boundaries on the plot.

17

> xyplot(`SSC-H` ~ `FSC-H` | factor(aliquot), fset.trans, subset = (time == 19),

filter = bvnormfilt)

The mass of cells close to zero in some of the samples seems to attract the norm2Filter. We might use a filter that
is better suited for mixtures of multiple populations or, alternatively, do some rough preselection like in the next
code chunk, using the rectgate filter defined before (Figure 8 b). This time, we pass the filterResult to xyplot.
Note how plotting is considerably faster, because we don’t need to re-evaluate the filter.

> sub <- Subset(fset.trans, rectgate)

> bvnormfilt.results.new <- filter(sub, bvnormfilt)

> xyplot(`SSC-H` ~ `FSC-H` | factor(aliquot), fset.trans, subset = (time == 19),

filter = bvnormfilt.results.new)

FSC−H

S
S

C
−

H 0

200

400

600

800

1000
A

0 400800

B C

0 400800

D

0 400800

E F

0 400800

G

0

200

400

600

800

1000
H

FSC−H

S
S

C
−

H 0

200

400

600

800

1000
A

0 400800

B C

0 400800

D

0 400800

E F

0 400800

G

0

200

400

600

800

1000
H

Figure 8: Scatter plot of FSC-H and SSC-H using a data-driven norm2Filter naively (left) and after some rough
preselection(right)

Exercise 13
Apply the improved norm2Filter to each frame and extract the lymphocyte population into a new flowSet lymphs.

Solution:

> lymphs <- Subset(fset.trans, bvnormfilt.results.new)

Assuming that we have done a decent job in selecting lymphocytes, we could go on an try to find interesting
populations in some of the fluorescent channels. We could for example use our curv2Filter to look for high density
regions:

> xyplot(`FL3-H` ~ `FL1-H` | factor(aliquot), lymphs,

subset = time == 46, filter = curvfilt, col="transparent")

18

FL1−H

F
L3

−
H

2

4

6

8
A

2 4 6 8 10

B C

2 4 6 8 10

D

2 4 6 8 10

E F

2 4 6 8 10

G

2

4

6

8
H

Figure 9: High density regions.

> sessionInfo()

R version 2.8.0 Under development (unstable) (2008-03-25 r44912)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=en_US;LC_PAPER=en_US;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US;LC_IDENTIFICATION=C

attached base packages:
[1] tools stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] flowViz_1.3.4 RColorBrewer_1.0-2 MASS_7.2-41
[4] geneplotter_1.17.7 lattice_0.17-6 annotate_1.17.11
[7] xtable_1.5-2 AnnotationDbi_1.1.21 RSQLite_0.6-7
[10] DBI_0.2-4 flowCore_1.5.13 feature_1.1-12
[13] rgl_0.76 misc3d_0.4-1 KernSmooth_2.22-22
[16] rrcov_0.4-03 robustbase_0.2-8 Biobase_1.17.13

loaded via a namespace (and not attached):
[1] grid_2.8.0 latticeExtra_0.3-1 stats4_2.8.0

19

References

D.A. Rizzieri, L.P. Koh, G.D. Long, C. Gasparetto, K.M. Sullivan, M. Horwitz, J. Chute, C. Smith, J.Z. Gong,
A. Lagoo, et al. Partially Matched, Nonmyeloablative Allogeneic Transplantation: Clinical Outcomes and
Immune Reconstitution. Journal of Clinical Oncology, 25(6):690, 2007.

J. Spidlen, R.C. Gentleman, P.D. Haaland, M. Langille, N. Le Meur N, M.F. Ochs, C. Schmitt, C.A. Smith, A.S.
Treister, and R.R. Brinkman. Data standards for flow cytometry. OMICS, 10(2):209–214, 2006.

20

	Introduction
	Reading and exploring the data
	Reading single files: the [class!flowFrame@flowFrame]flowFrame object
	Visualizing a [class!flowFrame@flowFrame]flowFrame
	The [class!flowSet@flowSet]flowSet Class
	Working with experimental meta-data
	Manipulating a [class!flowSet@flowSet]flowSet

	Transformations
	Quality assessment
	Filtering
	Standard Filters
	Subsetting and splitting
	Combinations of filters

