
Biostrings/BSgenome Lab (BioC2009)

Hervé Pagès and Patrick Aboyoun
Fred Hutchinson Cancer Research Center

Seattle, WA

July 26, 2009

1 Lab overview

Learn the basics of Biostrings and the BSgenome data packages.
For this lab you need:

• A laptop with the current devel version of R (R 2.10 series).

• The Biostrings, drosophila2probe, BSgenome, BSgenome.Celegans.UCSC.ce2
and BSgenome.Dmelanogaster.UCSC.dm3 packages.

2 Check your installation

Exercise 1
1. Start R and load the BSgenome.Dmelanogaster.UCSC.dm3 package.

2. Display chromosome 2L.

3 Basic string containers

3.1 DNAString objects

The DNAString class is the basic container for storing a large nucleotide se-
quence. Unlike a standard character vector in R that can store an arbitrary
number of strings, a DNAString object can only contain 1 sequence. Like for
most classes defined in Biostrings, DNAString is also the name of the constructor
function for DNAString objects.

Exercise 2
1. Load the BSgenome.Celegans.UCSC.ce2 package and display chromosome

I. Use the class function on this chromosome to see the type of container
used for its storage.

2. Use length and alphabetFrequency on it.

1

3. Extract an arbitrary subsequence with subseq.

4. Get the reverse complement of this subsequence.

3.2 DNAStringSet objects

The DNAStringSet class is the basic container for storing an arbitrary number
of nucleotide sequences. The length of a DNAStringSet object is the number
of sequences in it. The [operator can be used to subset it i.e. to select some
of the sequences. The [[operator can be used to extract an arbitrary sequence
as a DNAString object.

Exercise 3
1. The drosophila2probe package contains the probe sequence for the Drosophila

2 microarray from Affymetrix. Load this package and display the first 5
probe sequences stored in the drosophila2probe object.

2. Use the DNAStringSet constructor to store all the probe sequences into a
DNAStringSet object. Let’s call this object dict0.

3. Use length and width on dict0.

4. Use subsetting operator [to remove its 2nd element.

5. Invert the order of its elements.

6. Use subsetting operator [[to extract its 1st element as a DNAString
object.

7. Use the DNAStringSet constructor (i) to remove the last 2 nucleotides of
each element, then (ii) to keep only the last 10 nucleotides.

8. Call alphabetFrequency on dict0 and on its reverse complement. Try
again with collapse=TRUE.

9. How many probes have a GC content of 80% or more?

10. What’s the GC content for the entire microarray?

3.3 XStringViews objects

An XStringViews object contains a set of views on the same sequence called
the subject (for example this can be a DNAString object). Each view is defined
by its start and end locations: both are integers such that start <= end. The
Views function can be used to create an XStringViews object given a subject
and a set of start and end locations. length, width, [and [[are supported for
XStringViews objects, just like for DNAStringSet objects. In addition, subject,
start, end and gaps methods are also provided for XStringViews objects.

2

Exercise 4
1. Use the Views function to create an XStringViews object on Worm chro-

mosome I. Make it such that some views are overlapping but also that the
set of views doesn’t cover the subject entirely.

2. Try subject, start, end and gaps on this object.

3. Try alphabetFrequency on it.

4. Turn it into a DNAStringSet object with the DNAStringSet constructor.

3.4 MaskedDNAString objects

A MaskedDNAString object contains a masked DNA sequence, that is, a DNAS-
tring object plus a set of masks. The purpose of these masks is to allow the
user to mask the regions that need to be ignored during some computations.

You can use the unmasked accessor to turn a MaskedDNAString object into a
DNAString object (the masks will be lost), or use the masks accessor to extract
the masks (the sequence that is masked will be lost).

Exercise 5
1. Load the BSgenome.Dmelanogaster.UCSC.dm3 and display chromosome

2L.

2. Get rid of the masks defined on this chromosome.

Each mask on a sequence can be active or not. Masks can be activated
individually with:

> chr2L <- Dmelanogaster$chr2L

> active(masks(chr2L))["TRF"] <- TRUE # activate Tandem Repeats Finder mask

or all together with:

> active(masks(chr2L)) <- TRUE # activate all the masks

Some functions in Biostrings (like alphabetFrequency or some of the string
matching functions) will skip the masked region when walking along a sequence
with active masks.

Exercise 6
1. What percentage of Fly chromosome X is made of assembly gaps?

2. Confirm this result by checking the alphabet frequency of unmasked chro-
mosome X.

3. Try as(chrX , "XStringViews") and gaps(as(chrX , "XStringViews"))

on masked chromosome X. What are the lengths of the assembly gaps?

3

In addition to the built-in masks, the user can put its own mask on a se-
quence. Two types of user-controlled masking are supported: by content or by
position. The maskMotif function will mask the regions of a sequence that con-
tain a motif specified by the user. The Mask constructor will return the mask
made of the regions defined by the start and end locations specified by the user
(like with the Views function).

4 BSgenome data packages

You’ve already used the BSgenome data packages for Worm and Fly. The Bio-
conductor project provides BSgenome data packages for the commonly studied
organism. Use available.genomes() to see all the packages available.

The name of a BSgenome data package is made of 4 parts separated by a
dot (e.g. BSgenome.Celegans.UCSC.ce2):

• The 1st part is always BSgenome.

• The 2nd part is the name of the organism (abbreviated).

• The 3rd part is the name of the organisation who assembled the genome.

• The 4th part is the release string or number used by this organisation for
this assembly of the genome.

All BSgenome data package contain a single top level object whose name
matches the second part of the package name.

Exercise 7
1. Get the list of all available BSgenome data packages.

2. After you’ve loaded a BSgenome data package, use ?<name-of-the-package>
to see useful information about the package and some examples on how to
use it.

3. What’s the quick and easy way to get the lengths of all the sequences
stored in a BSgenome data package?

In a given BSgenome data package, either all DNA sequences are masked or
none is. In the former case, the sequences are always masked with 4 built-in
masks:

• the masks of assembly gaps, aka “the AGAPS masks”;

• the masks of intra-contig ambiguities, aka “the AMB masks”;

• the masks of repeat regions that were determined by the RepeatMasker
software, aka “the RM masks”;

4

• the masks of repeat regions that were determined by the Tandem Repeats
Finder software (where only repeats with period less than or equal to 12
were kept), aka “the TRF masks”.

If there is no BSgenome data package for your organism, then you can make
your own package. This process is described in the BSgenomeForge vignette
from the BSgenome software package.

5 String matching

5.1 The matchPattern function

This function finds all the occurences (aka matches or hits) of a given pattern
in a reference sequence called the subject.

Exercise 8
1. Find all the matches of a short pattern (invent one) in Worm chromosome

I. Don’t choose the pattern too short or too long.

2. In fact, if we don’t take any special action, we only get the hits in the plus
strand of the chromosome. Find the matches in the minus strand too.
(Note: the cost of taking the reverse complement of an entire chromosome
sequence can be high in terms of memory usage. Try to do something
better.)

3. Use the max.mismatch argument to find all the matches in chromosome I
that have at most 1 mismatching nucleotide.

4. Use the max.mismatch argument together with the with.indels argu-
ment to find all the matches in chromosome I that are at an edit distance
<= 2 from the pattern.

5.2 The vmatchPattern function

This function finds all the matches of a given pattern in a set of reference
sequences.

Exercise 9
1. Load the upstream1000 object from Dmelanogaster and find all the matches

of a short arbitrary pattern in it.

2. The value returned by vmatchPattern is an MIndex object containing the
match coordinates for each reference sequence. You can use the startIn-

dex and endIndex accessors on it to extract the match starting and ending
positions as lists (one list element per reference sequence). [[extracts the
matches of a given reference sequence as an MIndex object. countIndex

extract the match counts as an integer vector (one element per reference
sequence).

5

5.3 Ambiguities

IUPAC extended letters can be used to express ambiguities in the pattern or
in the subject of a search with matchPattern. This is controlled via the fixed
argument of the function. If fixed is TRUE (the default), all letters in the pattern
and the subject are interpreted litterally. If fixed is FALSE, IUPAC extended
letters in the pattern and in the subject are interpreted as ambiguities e.g. M will
match A or C and N will match any letter (the IUPAC_CODE_MAP named character
vector gives the mapping between IUPAC letters and the set of nucleotides that
they stand for). The most common use of this feature is to introduce wildcards
in the pattern by replacing some of its letters with Ns.

Exercise 10
1. Search pattern GAACTTTGCCAC in Celegans chromosome I.

2. Repeat but this time allow the 3 Ts in the pattern to match anything.

5.4 Finding the hits of a large set of short motifs

Our own competitor to other fast alignment tools like MAQ or bowtie is the
matchPDict function. Its speed is comparable to the speed of MAQ but it
uses more memory than MAQ to align the same set of reads against the same
genome. Here are some important differences between matchPDict and MAQ
(or bowtie):

1. matchPDict ignores the quality scores,

2. it finds all the matches,

3. it fully supports 2 or 3 (or more) mismatching nucleotides anywhere in
the reads (performance will decrease significantly though if the reads are
not long enough),

4. it supports masking (masked regions are skipped),

5. it supports IUPAC ambiguities in the subject (useful for SNP detection).

The workflow with matchPDict is the following:

1. Preprocess the set of short reads with the PDict constructor.

2. Call matchPDict on it.

3. Query the MIndex object returned by matchPDict.

Exercise 11
1. Preprocess dict0 (containing the probe sequences from Affymetrix Drosophila

2, see exercise 3) with the PDict constructor.

2. Use this PDict object to find the (exact) hits of dict0 in unmasked Fly
chromosome 2L.

6

3. Use countIndex on the MIndex object returned by matchPDict to extract
the nb of hits per read.

4. Which read has the highest number of hits? Display those hits as an
XStringViews object. Check this result with a call to matchPattern.

5. You only got the hits that belong to the + strand. How would you get
the hits that belong to the - strand?

6. Redo this analysis using inexact matching: now we want to allow up to 2
mismatching nucleotides per probe in the last 12 nucleotides of the probe.

7

	Lab overview
	Check your installation
	Basic string containers
	DNAString objects
	DNAStringSet objects
	XStringViews objects
	MaskedDNAString objects

	BSgenome data packages
	String matching
	The matchPattern function
	The vmatchPattern function
	Ambiguities
	Finding the hits of a large set of short motifs

