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Multiple testing

Many data analysis approaches in genomics rely on item-

by-item (i.e. multiple) testing:

Microarray expression profiles of “normal” vs “perturbed”

samples: gene-by-gene

ChIP-chip: locus-by-locus

RNAi and chemical compound screens

Genome-wide association studies: marker-by-marker

QTL analysis: marker-by-marker and trait-by-trait



Multiple testing

Classical hypothesis test:

null hypothesis H0, alternative H1

test statistic X ֏ t(X) ∈ R

α = P( t(X) ∈ Γrej | H0) type I error (false positive)

β = P( t(X) ∉ Γrej | H1) type II error (false negative)

When n tests are performed, what is the extent of type I 

errors, and how can it be controlled?

E.g.: 20,000 tests at α=0.05, all with H0 true: expect 1,000 

false positives



Experiment-wide type I error rates
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Family-wise error rate: P(V > 0), the probability of one or 

more false positives. For large m0, this is difficult to keep 

small.

False discovery rate: E[ V / max{R,1} ], the expected 

fraction of false positives among all discoveries. 
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p-values: a mixture

null

alternative



Example: differential expression testing

Acute lymphocytic leukemia (ALL) data, 

Chiaretti et al., Clinical Cancer 

Research 11:7209, 2005

Immunophenotypic analysis of cell 

surface markers identified

– T-cell derivation in 33,

– B-cell derivation in 95 samples

Affymetrix HG-U95Av2 3’ transcript 

detection arrays with ~13,000 probe 

sets

Chiaretti et al. selected probesets with 

“sufficient levels of expression and 

variation across groups” and among 

these identified 792 differentially 

expressed genes.

Clustered expression data for all 128 
subjects, and a subset of 475 genes 

showing evidence of differential 
expression between groups



Independent filtering

From the set of 13,000 probesets, 

first filter out those that seem to report negligible signal 

(say, 40%),

then formally test for differential expression on the rest.

Conditions under which we expect negligible signal :

1. Target gene is absent in both samples. (Probes will 

still report noise and cross-hybridization.)

2. Probe set fails to detect the target.

Literature: von Heydebreck et al. (2004)

McClintick and Edenberg (BMC Bioinf. 2006) and references therein

Hackstadt and Hess (BMC Bioinf. 2009)

Many others.

Slide 7



Increased detection rates
Stage 1 filter: compute variance, across samples, for each probeset, 

and remove the fraction θ that are  smallest

Stage 2: standard two-sample t-test

ALL dataALL dataALL dataALL data
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Increased power?

Increased detection rate implies increased power 

only if we are still controlling type I errors at the nominal 

level.

ALL dataALL dataALL dataALL data

Concerns: 

• Have we thrown away good genes?

• Use a data-driven criterion in stage 1, 

but do type I error consideration only on 

number of genes in stage 2

Informal justification:

Filter does not use covariate information 

(T-/B-cell type)



Non-specific filtering?

An informal explanation has been that the filtering “does 

not use any information from the class labels”. 

However, this is not enough, as these examples show:

1. Unsupervised clustering of the samples into two 

groups, then filter by t-statistic for these groups. 

Asymptotically, and for certain data, 

stage 1 statistic ≡ stage 2 statistic

2. Certain null distributions of the data across samples 

that are not rotation symmetric (but iid).Then, 

Lt ≠ Lt | σ



Result: independence of stage 1 and stage 2 

statistics under the null hypothesis

For genes for which the null hypothesis is true (X1 ,..., Xn

exchangeable), f and g are statistically independent in 

both of the following cases: 

• Normally distributed data:

f (stage 1): overall variance (or mean)

g (stage 2): the standard two-sample t-statistic, or any 

test statistic which is scale and location invariant.

• Non-parametrically:

f: any function that does not depend on the

order of the arguments. E.g. overall variance, IQR.

g: the Wilcoxon rank sum test statistic.

Both can be extended to the multi-class context: ANOVA 

and Kruskal-Wallis.
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Derivation

Non-parametric case:

Straightforward decomposition of the joint probability 

into product of probabilities using the assumptions.

Normal case:

Use the spherical symmetry of the joint distribution, p-
dimensional N(0, 1σ2), and of the overall variance; 

and the scale and location invariance of t. 

This case is also implied by Basu's theorem 

(V complete sufficient for family of probability measures 
P,  T ancillary  ⇒ T,  V independent)



Type I error control requires

1. Correct specification of the the marginal distribution of 

the test statistic for the true nulls.

2. A dependence structure which is appropriate for the 

method being used.

�

more subtle



How multiple testing procedures deal with 

dependence

1. Methods that work on the p-values only and allow 

general dependence structure: Bonferroni, Bonferroni-

Holm (FWER), Benjamini-Yekutieli (FDR)

2. Those that work on the data matrix itself, and use 

permutations to estimate null distributions of relevant 

quantities (using the empirical correlation structure): 

Westfall-Young (FWER) 

3. Those that work on the p-values only, and require 

dependence-related assumptions: Benjamini-Hochberg 

(FDR), q-value (FDR)



Now we are confident about type I error, but 

does it do any good? (power)



θ
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Results summary

There are cases in which "filtering" leads to incorrect type-

I error control.

In other cases, the stage-one (filter) and stage-two 

(differential expression) statistics are marginally 

independent:

1. (Normal distributed data): overall variance or mean, 

followed by t-test

2. Any permutation invariant statistic, followed by 

Wilcoxon rank sum test

Marginal independence is sufficient to maintain control of 

FWER at nominal level.

Marginal independence does not preclude changes to 

correlation structure in filtered data: control of FDR not 

guaranteed; this is not likely a problem in practice.



Conclusion

Correct use of this two-stage approach can substantially 

increase power at same type I error.

Why does it work?

The filtering step is an (informal) way to bring in additional 

knowledge about the data (a „model refinement“)



Premier lab for biological research in Europe, with five sites, in 

Heidelberg, Cambridge (UK), Grenoble (F), Rome and 

Hamburg.  

Cell biology, Biophysics, Developmental Biology, Structural 

Biology, Genome Biology, Computational Biology
EMBL

EMBL



Projects

Genetics of complex phenotypes

Understanding complex (multi-variate) genotype-

phenotype relationships from high-resolution model 

organism (yeast, fly) data

Next Gen Sequencing (Genotype, RNA-profiling, ChIP), 

microscopy

Based at EMBL Heidelberg‘s Genome Biology Unit

Solexa – better base-calling and image processing

Based at EBI Cambridge in Nick Goldman‘s group



limma-t (moderated t, empirical Bayes)
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Derivation (non-parametric case)

exchangeability
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A, B: measureable sets

f: stage 1, g: stage 2

f's permutation invariance

distribution of g generated 

by permutations

Parametric case: see

Richard Bourgon‘s

poster


