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In the ChIP-Seq tutorial, we used the IRanges and ShortRead packages to get coverage vectors
from aligned Solexa reads. The function coverage gave us a GenomeData object that contained
for each chromosome an Rle vector of coverage scores.

In this exercise, we explore an interesting analysis that is of use especially in ChIP-Seq ex-
periments studying histone modifications or other characteristics of chromatin structure. In one
of the pioneering works in this field, Barski et al. [1] have performed ChIP-Seq for various his-
tone modifications. Among other questions they investigated whether the positioning of histone
methylation marks correlates with transcription start sites (TSSs). They could confirm that (as
was already knwon before) the mark H3K4me3 peaks sharply at TSSs with a distinctive peak
shape.

Here, we will re-do the final step of this analysis.
In order to save time, we have already performed these steps for you:

• Download Barski et al.’s raw data from the NCBI Short Read Archive.

• Use Maq to align the data from the lanes with H3K4me1 and H3K4me3 samples to the
human reference genome.

• Use ShortRead ’s ReadAligned function to read in the output of Maq.

• Call the coverage method to get the coverage vectors.

The following commands were used for this:

> library( ShortRead )

> maps.me1 <- sapply( list.files( "ShortReadExampleData/H3K4me1", "run.*lane.\\.map" ),

+ function(filename)

+ readAligned( "ShortReadExampleData/H3K4me1", filename, type="MAQMapShort" ) )

> maps.me3 <- sapply( list.files( "ShortReadExampleData/H3K4me3", "run.*lane.\\.map" ),

+ function(filename)

+ readAligned( "ShortReadExampleData/H3K4me3", filename, type="MAQMapShort" ) )

> get_coverage <- function( lanes, chrom, chromLength ) {

+ res <- Rle( 0, chromLength )
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+ for ( lane in lanes ) {

+ lc <- lane[ chromosome(lane) == chrom ]

+ cvg <- coverage( lc, start = 1, end = chromLength,

+ extend = 185L - width(lc) )

+ res <- res + cvg[[ chrom ]]

+ }

+ res

+ }

> lengthChr10 <- 135374737

> coverage.chr10.me1 <- get_coverage( maps.me1, "10", lengthChr10 )

> coverage.chr10.me3 <- get_coverage( maps.me3, "10", lengthChr10 )

> save( coverage.chr10.me1, coverage.chr10.me3, file="coverage.H3K4meX.rda")

In case you want to do this yourself, you can find the raw data at http://www.ebi.ac.uk/
~anders/ShortReadExampleData

To save space, we have taken only the vector for chromosome 10 from this data. Load the
ShortRead package and the R data file coverage.H3K4meX.rda.

> library("ShortRead")

> load(file.path("..", "data", "coverage.H3K4meX.rda"))

We have these two Rle vectors:

> coverage.chr10.me1

’numeric’ Rle instance of length 135374737 with 1144002 runs
Lengths: 49865 185 336 185 632 185 1985 50 135 12 ...
Values : 0 1 0 1 0 1 0 1 2 1 ...

> coverage.chr10.me3

’numeric’ Rle instance of length 135374737 with 1857096 runs
Lengths: 50124 185 67 185 74 54 131 54 23 185 ...
Values : 0 1 0 1 0 1 2 1 0 1 ...

If you would like to study these tracks in a genome browser, you can save them as Wiggle
files by using the rtracklayer package. rtracklayer expects to get the data as RangedData, hence
we have to use a coercion method first.

> library("rtracklayer")

> coverage.chr10.me1.rd <- as( coverage.chr10.me1, "RangedData" )

> coverage.chr10.me3.rd <- as( coverage.chr10.me3, "RangedData" )

> names( coverage.chr10.me1.rd ) <- "chr10"

> names( coverage.chr10.me3.rd ) <- "chr10"

The coercion method cannot know that the data is from ”chr10”, because this information is
not part of the Rle vector. (The original call to coverage returned a GenomeData object, which
contaions the chromosome names. However, we have only one of its Rle elements here.) Hence,
we have to add the chromosome name manually.

Now, we can export the data as wiggle files:

> export( coverage.chr10.me1.rd, "chr10_me1.wig", format="wig" )

> export( coverage.chr10.me3.rd, "chr10_me3.wig", format="wig" )
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Inspect the wiggle files with a text editor. You may find that the chromosome names are
wrong, they read ”chrchr10”. This is a bug in rtracklayer that will be corrected in the next few
days: The export function prefixes an extra“chr” to the chromosome names. To resolve the issue,
just omit “chr” in your chromosome name:

> names( coverage.chr10.me1.rd ) <- "10"

> names( coverage.chr10.me3.rd ) <- "10"

> export( coverage.chr10.me1.rd, "chr10_me1.wig", format="wig" )

> export( coverage.chr10.me3.rd, "chr10_me3.wig", format="wig" )

Now, use your favorite genome browser to display the wiggle files.
You can also use Hilbert curve visualisation. Either, use the stand-alone tool and load the

wiggle files, or type

> library( HilbertVisGUI )

> hilbertDisplay( as.integer( coverage.chr10.me1 ) )

Using HilbertVis from R unfortunately requires us to convert from an Rle vector to an ordinary
one, and this will require a lot of RAM. (I’ll change this soon.) So, it might not work well on a
2 GB machine.

If you have enough RAM, you may also compare the two data vectors:

> hilbertDisplay(

+ as.integer( coverage.chr10.me1 ),

+ as.integer( coverage.chr10.me3 ) )

In order to see how the methylation marks correlate around the TSSs, we place windows
around them and collect the coverage from 200 bp before to 200 bp after the TSS. This gives us
a vector of length 401 from each TSS, and by adding them all up, we see whether the histone
marks tend to be at a non-random distance to TSSs.

Assume that a TSS is at position 123456. Then, we can get the coverage of the 101-bp vector
around it with the subseq method:

> as.vector( subseq( coverage.chr10.me1, 123456-50, 123456+50 ) )

[1] 5 5 7 7 7 7 7 7 7 7 7 7 7 7 6 7 8 8 8 8 8 8 8 8 8
[26] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
[51] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9
[76] 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
[101] 10

Note that subseq returns an Rle object. However, our result is a short vector, and for these
sizes, it is easy enough to use ordinary vectors. Hence, the call to as.vector.

If we have a vector of TSS positions, we can now easily add all these intervals up.

Exercise 1
Write a function to do that. It should take an Rle coverage vector, an integer vector of TSS
positions and a boolean vector indicating whether the TSS and its gene are on the reverse
strand.

Solution: You might write something like this:
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> deltaConvolve <- function( coverage, winCentres, revStrand,

+ left, right)

+ {

+ result <- rep( 0, right - left + 1 )

+ for( i in seq(along=winCentres) ) {

+ v <- as.vector( subseq( coverage, winCentres[i] + left,

+ winCentres[i] + right ) )

+ if( revStrand[i] )

+ v <- rev( v )

+ result <- result + v

+ }

+ result

+ }

If you like it more elegant, try using sapply instead of for. This might actually be slower,
however.

Exercise 2
Now, we need a list of the transcription start sites of all genes on human chromosome 10. If you
are familiar with the biomaRt package, try to get this information from Ensembl.

Solution: The following Biomart query does the job.

> library("biomaRt")

> mart <- useMart( "ensembl", dataset = "hsapiens_gene_ensembl" )

> martReply <- getBM( attributes=c( "transcript_start", "transcript_end", "strand" ),

+ filters="chromosome_name", values="10", mart=mart )

We now have

> head(martReply)

transcript_start transcript_end strand
1 104275728 104275989 1
2 21893406 21893512 -1
3 122104417 122104685 -1
4 121517754 121518044 1
5 120810487 120810613 -1
6 120535391 120535465 -1

Note that transcription_start is always smaller than transcription_end, even when the
transcript is on the “−” strand. Hence, we have to use either the start or the end coordinate of
the transcript, depending on the strand, to get the actual transcription start sites, i.e., the 5’
ends of the transcripts:1

> tss <- ifelse( martReply$strand == 1,

+ martReply$transcript_start,

+ martReply$transcript_end )

This allows us to call our function:
1The version of this document that we distributed at the course neglected this point. Many thanks to Ludo

Pagie who spotted this mistake.
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Figure 1: Histone modification signals, averaged over transcripts originating from chromosome
10 and aligned by TSS. Compare to Fig. 2 B and D in [1].

> win = c(-500, 500)

> H3K4me1 <- deltaConvolve( coverage.chr10.me1, tss, martReply$strand == -1,

+ left=win[1], right=win[2] )

> H3K4me3 <- deltaConvolve( coverage.chr10.me3, tss, martReply$strand == -1,

+ left=win[1], right=win[2] )

We can plot this and get two curves similar to those in Barski et al.’s paper.

> plotfun = function( win, ... ) {

+ y = cbind( ... )

+ matplot( win[1]:win[2], y, type=’l’, lty=1, lwd=2,

+ ylab="average coverage", xlab="distance from TSS" )

+ legend( "topleft", colnames(y), fill=seq_len(ncol(y)) )

+ }

> plotfun( win, H3K4me1, H3K4me3 )

The result is shown in the left panel of Figure 1. As we used data from only one chromosome,
ours is less smooth than theirs.

It might be more appropriate to normalize the two curves by the respective library sizes:

> H3K4me1.N = H3K4me1 / sum(coverage.chr10.me1)

> H3K4me3.N = H3K4me3 / sum(coverage.chr10.me3)

> plotfun( win, H3K4me1.N, H3K4me3.N )
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Figure 2: The same plot as in Fig. 1b, but with a wider window around the TSSs.
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The result is shown in the right panel of Figure 1.
A wider range of the window might be helpful, too. hence, the same again with a window of

width 6,000:

> win.w = c(-3000, 3000)

> H3K4me1.w <- deltaConvolve(coverage.chr10.me1, tss, martReply$strand == -1,

+ left=win.w[1], right=win.w[2])

> H3K4me3.w <- deltaConvolve(coverage.chr10.me3, tss, martReply$strand == -1,

+ left=win.w[1], right=win.w[2])

> H3K4me1.w.N = H3K4me1.w / sum(coverage.chr10.me1)

> H3K4me3.w.N = H3K4me3.w / sum(coverage.chr10.me3)

> plotfun( win.w, H3K4me1.w.N, H3K4me3.w.N )

The output is shown in Fig. 2.
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