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Overview 

In recent years, new sequencing schemes, also called 
•  high-throughput sequencing 
•  massively parallel sequencing 
•  flow-cell sequencing 

have been proposed. 

Commercially available are devices from 
•  Roche (formerly: 454) 
•  Illumina (formerly: Solexa): “GenomeAnalyzer” 
•  Applied Biosystems: “SOLiD system” 
•  Helicos: “Helicoscope” 



Core ideas 

Two core differences of HTS to Sanger capillary 
sequencing: 

•  The library is not constructed by cloning, but by a 
novel way of doing PCR, where the fragments 
are separated by physico-chemical means 
(emulsion PCR or bridge PCR). 

•  Very many fragments are sequenced in parallel 
in a flow cell (as opposed to a capillary), 
observed by a microscope with CCD camera. 



Solexa workflow 

•  Bridge PCD to prepare “clusters” 

•  Sequencing: 35 or more cycles x 4 bases, 
with micrographs taken in 300 tiles x 8 lanes 

-> more than 1 terabyte of image data 

•  “SolexaPipeline”: Sequences and alignment 



Solexa: Flow cell 



Solexa: sample preparartion 



Solexa: sample preparartion 



Solexa: sequencing 



Solexa: sequencing 



Roche 454 

•  presented 2005, first on market 
•  emulsion PCR 
•  pyrosequencing (polymerase-based) 
•  read length: 250 bp 
•  paired read separation: 3 kb 
•  300 Mb per day 
•  $60 per Mb 
•  error rate: around 5% per bp 
•  dominant type of error: indels, especially in 

homopolymers 



Illumina / Solexa 

•  second on the market 
•  bridge PCR 
•  polymerase-based sequencing-by-synthesis 
•  32..40 bp (newest models: up to 100 bp) 
•  paired read separation: 200 bp 
•  400 Mb per day (getting better) 
•  $2 per Mb 
•  error rate: 1% per bp (good reads: 0.1%) 
•  dominant error type: substitutions 



Applied Biosystems SOLiD 

•  third on market (since late 2007) 
•  emulsion PCR 
•  ligase-based sequencing 
•  read length: 50bp 
•  paired read separation: 3 kb 
•  600 Mb per day (colour space) 
•  $1 per Mb 
•  very low error rate: <0.1% per bp 

(still high compared to Sanger capillary sequencing: 0.001%) 

•  dominant error type: substitutions (colour shift) 



Helicos (“Helicoscope”) 

•  on the market since a year 
•  no amplification  
•  single-molecule polymerase-based sequencing 
•  read length: 25..45 bp 
•  1200 Mb per day 
•  $1 per Mb 
•  error rate: <1% (manufacturer claim) 

Comparison data from: 
- E Mardis, Trends in Genetics 24 (2008) 133 
- R A Holt, S J M Jones, Genome Res 18 (2008) 839 
- J Shendure, H Ji, Nature Biotech 26 (2008) 1135 



Polonator 

•  on the market since less than a year 
•  emulsion PCR 
•  ligase-base sequencing 
•  very short read-length: 13 bp 
•  but: low-cost instrument ($150,000) 
•  <$1 per Mb 



Use-cases for HTS 

•  de-novo sequencing and assembly of small 
genomes 

•  transcriptome analysis (RNA-Seq, sRNA-Seq, ...) 
•  identifying transcripted regions 
•  expression profiling 

•  Resequencing to find genetic polymorphisms: 
•  SNPs, micro-indels 
•  CNVs 

•  ChIP-Seq, nucleosome positions, etc. 
•  DNA methylation studies (after bisulfite treatment) 
•  environmental sampling (metagenomics) 
•  reading bar codes 



Multiplexing 

•  Solexa now generates 6-12 mio. 36bp reads per 
lane. 

•  Using a lane for a single sample is often wasteful. 
•  Multiplexing: incorporate tags between 

sequencing primer and sample fragments to 
distinguish several samples in the same lane 



Coming soon: Targeted sequencing 

•  Currently, one always samples the whole 
genome, which is wasteful if one is interested in 
only a specific region. 

•  Microarrays allow to select fragments of interest. 



Paired-end sequencing: Principle 

The two ends of the fragments get different 
adapters. 

Hence, one can sequence from one end with one 
primer, then repeat to get the other end with the 
other primer. 

This yields “pairs” of reads, separated by a known 
distance (200bp for Illumina). 

For large distances, “circularisation” might be 
needed and generates “mate pairs”. 



Paired ends: Uses 

Paired-end sequencing is useful 
•  to find micro-indels 
•  to find copy-number variations 
•  for assembly tasks 
•  to look for splice variants 

but of little value for 
•  standard ChIP-Seq 
•  “normal” RNA-Seq (not looking for “unknown” 

transcripts) 



Use cases for HTS: Bioinformatics 
challenges 

Established procedures may not be suitable. 
New algorithms are required for 
•  assembly 
•  alignment 
•  statistical tests (counting statistics) 
•  visualization 
•  segmentation 
•  ... 



Solexa standard workflow   



SolexaPipeline 

•  "Firecrest": Identifying clusters 
⇨ typically 3..5 mio clusters per lane 

•  "Bustard": Base calling 
⇨ sequence for each cluster,  
with Phred-like scores 

•  "Eland": Aligning to reference 



Firecrest output 

Large tab-separated text files with one row per 
identified cluster, specifying 

•   lane index and tile index 
•   x and y coordinates of cluster on tile 
•   for each cycle a group of four number, specifying 

the flourescence intensity for A, C, G, and T. 



Bustard output 

Two tab-seperated text files, with one row per 
cluster: 

•  "seq.txt" file: 
•  lane and tile index, x and y coordinates 
•  the called sequence as string of A, C, G, T 

•  "prb.txt" file: 
•  Phred-like scores, ranging from -40 to 40; 
•  one value per called base 



Fastq format 

“FASTA with Qualities” 

Example: 

@HWI-EAS225:3:1:2:854#0/1 
GGGGGGAAGTCGGCAAAATAGATCCGTAACTTCGGG 
+HWI-EAS225:3:1:2:854#0/1 
a`abbbbabaabbababb^`[aaa`_N]b^ab^``a 
@HWI-EAS225:3:1:2:1595#0/1 
GGGAAGATCTCAAAAACAGAAGTAAAACATCGAACG 
+HWI-EAS225:3:1:2:1595#0/1 
a`abbbababbbabbbbbbabb`aaababab\aa_` 



Fastq format 

Each read is represented by four lines: 
•   '@', followed by read ID 
•  sequence 
•  '+', optionally followed by repeated read ID 
•  quality string: 

•  same length as sequence 
•  each character encodes the base-call quality of one base 



Fastq format: Base-call quality strings 

•  If p is the probability that the base call is wrong, 
the (standard Sanger) Phred score is: 

QPhred = —10 log10 p 
•  The score is written with the character whose ASCII code is 

QPhred+33 

•  Solexa uses a different convention: 
QSolexa = —10 log10 ( p / (1—p) ) 

•  For high-quality bases, QPhred ≈ QSolexa 
•  The character has ASCII code QSolexa+64 

•  SolexaPipeline 1.3 changed it again 



FASTQ: Phred base-call qualities 

quality score 
Qphred 

error prob. p characters 

  0 ..   9 1 .. 0.13 !”#$%&'()* 
10 .. 19 0.1 .. 0.013   +,-./01234 
20 .. 29 0.01 .. 0.0013   56789:;<=> 
30 .. 39 0.001 .. 0.00013    ?@ABCDEFGH 

40         0.0001                        I 



The Sanger / Solexa FASTQ confusion 

•  Solexa has chosen to base their quality on the odds 
instead of the proability of an error. 

•  Also, they use a different offset, and hence different 
characters: 

     !”#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHI 
;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgh 
     ^         ^         ^         ^         ^ 

•  Most tools (e.g., Maq, Bowtie, BWA) expect Sanger 
scores by default, so you have to either convert the 
scores or tell the tool. 

•  New: SolexaPipeline 1.3 has changed the definition 
of Q again! 

0 10 20 30 40 

Sanger 

Solexa 



Raw vs. calibrated base-call qualities 

•  The raw quality values reported by the Bustard 
base caller  are estimates based on the intensity 
values reported by Firecrest. 
•  If one colour is clearly brighter, a good quality is given. 
•  If the two brightest colours are comparable in intensity, a 

bad quality is indicated. 

•  To interpret the scores reliably as probabilities, 
they need to be calibrated. 

•  This can be done by looking at mismatches in 
aligned reads. 



FASTQ and paired-end reads 

Convention for paired-end runs: 

The reads are reported in two FASTQ files, such 
that the nth read in the first file is paired to the nth 
read in the second file. The read IDs must match. 
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Purpose 

New generation DNA sequencers provide billions of 
bases rapidly and inexpensively 

Millions of short reads (25-100bp) rather than a 
“few” long ones 

Their position within a reference sequence has to 
be determined  “read mapping” 



Typical input data for alignment 

‣ Illumina/Solexa: 100 million 75+75bp read pairs in a run 

‣ ABI/SOLiD: similar in scale (50+50bp) 

‣ Roche/454: ~300-500bp reads, 100Mbp a run 

 ✓ Currently a little more expensive in terms of money/
base-pair 

Courtesy of Heng Li (Welcome Trust Sanger Institute) 



Challenges of mapping short reads 

Speed: if the genome is large and we have billions 
of reads? 

Using traditional tools 
like BLAST/BLAT would 
require 100s CPU hours. 

Memory:  
 Suffix array requires 12GB for human genome 
 Indexing reads or better in-memory index 

 BAC dataset: 3 415 291 reads; Lin, H. et al., 2008 



Additional Challenges 

•  Read errors 
•  dominant cause for mismatches 
•  detection of substitutions? 
•  Importance of the base-call quality (“phred scores”) 

•  Unknown reference genome 
•  “de-novo” assembly 

•  Repetitive regions / Accuracy 
•  ~20% of the human genome are repetitive to 32bp reads 
•  Importance of paired-end information 



Technical Challenges 

Sequencer difference: 
•  454: longer reads require different tools 

•  SOLiD:  
•  use color space  
•  distinct seq. error from polymorphism 

•  deletion shift the colors 
•  not easy to convert into “base” space 

•   has to be aligned against color space reference 

A C G T 
A 
C 
G 
T 

ACGGTC ATGGTC 



Additional Technical Challenges 

Atypical reference treatment: e.g. bisulfite treatment 



Alignment software 

In the last two years, many tools for short-read 
alignments have been published: 

•  Eland 
•  Maq 
•  Bowtie 
•  BWA 
•  SOAP(2) 
•  Biostrings 
•  SSAHA2, RMAP, SHRiMP, ZOOM, Novoalign, 

Mosaik, Slider, ... 

Trapnell, C. & Salzberg, S.L., 2009 



Short read aligners: Differences 

Alignment tools differ in  
•  speed 
•  suitability for use on compute clusters 
•  memory requirements 
•  accuracy 

•  Is a good match always found? 
•  What is the maximum number of allowed mismatches? 

•  ease of use 
•  available down-stream analysis tools 

•  Are there SNP and indel callers that can deal with the tool's 
output format? 

•  Is there an R package to read in their output? 



Short read aligners: Differences 

Alignment tools also differs in whether they can 
•  make use of base-call quality scores 
•  estimate alignment quality 
•  work with paired-end data 
•  report multiple matches 
•  work with longer than normal reads 
•  match in colour space (for SOLiD systems) 
•  align data from methylation experiments 
•  deal with splice junctions 



Courtesy of Heng Li (Welcome Trust Sanger Institute) 

(BWT = Burrows-Wheeler Transform) 



Trapnell, C
. &

 S
alzberg, S

.L., 2009 



Short read alignment: Algorithms 

The Burrows-Wheeler transform seems to be the 
winning idea: 
•  very fast 
•  sufficiently accurate 
•  used by the newest tools (Bowtie, SOAPv2, BWA). 



Popular alignment tools 

•  Eland (Solexa) 

•  supplied by Illumina as part of the Solexa Pipeline 
•  very fast 
•  does not make use of quality scores 

•  Maq (Li et al., Sanger Institute) 

•  widely used 
•  interprets quality score and estimates alignment score 
•  downstream analysis tools (SNP, indel calling) 
•  can deal with SOLiD colour space data 
•  being replaced by BWA 

•  Bowtie (Langmead et al., Univ of Maryland) 

•  based on Burrows-Wheeler transform 
•  very fast, good accuracy 
•  downstream tools available 



Short-read algorithms: Seed matches 

Maq claims to find all alignments with up to 2 
mismatches and may find alignments with more 
than two mismtaches.  

How comes? 



Aligning hashed reads 

Naive algorithm: 
•  Make a hash table of the first 28mers of each 

read, so that for each 28mer, we can look up 
quickly which reads start with it. 

•  Then, go through the genome, base for base. For 
each 28mer, look up in the hash table whether 
reads start with it, and if so, add a note of the 
current genome position to these reads. 

Problem: What if there are read errors in the first 28 
base pairs? 



Courtesy of Heng Li (Welcome Trust Sanger Institute) 



Spaced seeds 

Maq prepares six hash table, each indexing 28 of 
the first 36 bases of the reads, selected as 
follows: 

0 36 14 
Hence, Maq finds all alignments with at most 2 
mismatches in the first 36 bases. 
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Courtesy of Heng Li (Welcome Trust Sanger Institute) 



Courtesy of Heng Li (Welcome Trust Sanger Institute) 



MAQ 

•  Pros 
•  paired-end able (gapped alignment) 
•  adapter trimming 
•  SOLiD support 

•  alignment decoding for color reads 
•  correct color error after the alignment 

•  Cons 
•  “slow” 
•  does not support Helicos 
•  no gapped alignment for single reads 



Bowtie: Burrows-Wheeler indexing 

first occurrence of g 
  

second occurrence of c 

second occurrence of c 
  

third occurrence of a 

third occurrence of a 
  

first occurrence of a 

and so on… 

First Last Mapping 

The BW Transform 



Bowtie 

•  Reference genome suffix arrays are BW transformed and 
indexed 

•  Model organism genome indexes are available for download 
from the Bowtie webpage 



Bowtie 

•  Pros 
•  small memory footprint (1.3GB for the human genome) 
•  fast (8M reads aligned in 8 mins against the Drosophila 

genome) 
•  paired-end able (gapped alignment) 

•  Cons 
•  less accurate than MAQ 
•  does not support SOLiD, Helicos 
•  no gapped alignment 



Other commonly used aligners 

•  SOAP and SOAP2 (Beijing Genomics Institute) 

•  with downstream tools 
•  SOAP2 uses BWT 

•  SSAHA, SSAHA2 (Sanger Institute) 

•  one of the first short-read aligners 

•  Exonerate (EBI) 

•  not really designed for short reads but still useful 

•  Biostrings (Bioconductor) 

•  R package, see M. Morgan's talk 
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What next? 

NGS offers the possibility to sequence anything 
and aligning the reads against “reference” 
genome is straightforward. 
 But what if there is no such “reference” genome? 

   “de novo” assembly 

Aligning the reads is the only first step 



Assembly 

•  Solexa reads are too short for de novo assembly 
of large genomes. 

•  However, for prokaryotes and simple eukaryotes, 
reasonably large contigs can be assembled. 

•  Using paired-end reads with very large end 
separation is crucial. 

•  Assembly requires specialized software, typically 
based on so-called de-Brujin graphs 

•  Most popular assembly tool:  
•  Velvet (Zerbino et al.) 
•  ABySS (Simpson et al.) 



Courtesy of Heng Li (Welcome Trust Sanger Institute) 



Paired-end alignment 

When aligning matepaired-end data, the aligner 
can use the information that mate-paired reads 
have a known separation: 

•  Try to align the reads individually 
•  Then, for each aligned read, attempt to align the 

mate in a small window near the first read's 
position with a more sensitive algorithm, e.g., 
Smith-Waterman to allow for gaps. 
•  Be sure to tell the aligner the minimal and maximal 

separation. 

•  This allows to find small indels. 



Resequencing: SNP calling 

HTS is ideally suited for re-sequencing 

•  If a base differs from the reference in most reads 
that are aligned to this locus, it is a likely SNP 

•  If the difference occurs in half of the reads, it is a heterozygous 
SNP. 

•  If it appears in only a few reads, it could also be a read error. 

•  Calculating a p-value for a SNP call is straight-
forward 
•  Complication: Include base-call and alignment qualities as 

priors; interdependence of bases causes bias 



Software for SNP calling 

•  Some aligners com with SNP calling functionality 
•  Maq 
•  SOAP 
•  Bowtie has a converter to Maq's format to allow to use 

Maq's facilities 
•  For BWA, the SAMtools can be used 

•  Output is a list of SNPs, if possible with p values 

•  The many different alignment have prevented 
modularization so far. 
•  SAM (the Sequence/Alignment Map format) may become a 

standard. 



Courtesy of Heng Li (Welcome Trust Sanger Institute) 
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Courtesy of Heng Li (Welcome Trust Sanger Institute) 



Courtesy of Heng Li (Welcome Trust Sanger Institute) 



Tools for RNA-Seq 

RNA-Seq has additional challenges: 
•  Reads may straddle splice junctions 
•  Paralogy between genes prevent unique 

mappings 
•  One may want to incorporate or amend known 

gene models 

Specialized tools for RNA-Seq alignment are  
•  ERANGE 
•  TopHat 
•  G-Mo.R-Se 

to call differential expression 
edgeR 
BayesSeq 



A worked example: Yeast resequencing 

Samples: 3 closely related strains derived from the 
standard S. cervesiae lab strain S288c. 

•  Strain A: spontaneously evolved resistance 
against 
antibiotic X. 

•  Strain B: spontaneously evolved resistance 
against 
antibiotic Y. 

•  Strain C: engineered to have resistance against 
antibiotic B 



Worked example: Data 

For each strain, genomic DNA was extracted, 
fragemented and sequenced in one Solexa lane 
in paired-end mode, 36 bp from either end. 

From the core facility, we got six data files 
•  StrainA_1_sequence.txt 
•  StrainA_2_sequence.txt 
•  StrainB_1_sequence.txt 
•  StrainB_2_sequence.txt 
•  StrainC_1_sequence.txt 
•  StrainC_2_sequence.txt 



Worked example: Raw data files 

Content of the _sequence.txt data files: 

[...] 
@HWI-EAS225_309MTAAXX:5:1:80:1842/1 
GCAAACAATGTTTTGTTGTCGTATTTCTTTGTGAAG 
+HWI-EAS225_309MTAAXX:5:1:80:1842/1 
bbbbbbbbbbbbbbbbb`bb[bbbbb`bbbS`[`WK 
@HWI-EAS225_309MTAAXX:5:1:1214:1711/1 
GAAACCACATCAAAAACTTTTCTGTTGACAGTCCAC 
+HWI-EAS225_309MTAAXX:5:1:1214:1711/1 
bbbbbbbbbbbbbbbbbbbbbbbbbb`bbb[[`^`] 
[...] 

Small letters in quality lines  
     => FASTQ file in Solexa scale 



Step 1: Get reference and build index 

•  Download the reference genome (the Saccharomyces Genome Database's  
assembly for the S288c reference strain, as provided by Ensembl version 54) 

wget ftp://ftp.ensembl.org/[...]revisiae.SGD1.01.54.dna.toplevel.fa.gz 
gunzip Saccharomyces_cerevisiae.SGD1.01.54.dna.toplevel.fa.gz 
We use one big FASTA file containing  all chromosomes,  

the mitochondrial genome and the 2-micron plasmid. 

•  Let Bowtie build its index (i.e., permorf the Burrows-Wheeler  
transformation on the genome): 

bowtie-build Saccharomyces_cervesia[...]toplevel.fa Scerv 
This takes a while and produces six files, named Scerv*ebwt. 

•  For a vertebrate genome, it may take many hours. Hence, prebuilt 
indices for many genomes can be downloaded from the Bowtie web 
site. 



Step 2: Perform the alignment 

•  Bowtie is called as follows: 
bowtie –-solexa-quals –-threads 4                  \  

 Scerv                                          \ 
 -1 StrainA_1_sequence.txt                      \ 
 -2 StrainA_2_sequence.txt                      \ 

    --unfq StrainA.unaligned.fq                    \ 
    StrainA.bwtout 

•  With a single-core CPU, this takes a couple of hours. Using a 
multi-core CPU (“--threads”) speeds things up. 

•  We get three output files:  
•  StrainA.bwtout: the alignment,  
•  StrainA_unaligned_1.fq and 
•  StrainA_unaligned_2.fq: all reads that could not be aligned. 



Bowtie output file 

The output file looks like this (with lines wrapped) 

[...] 
HWI-EAS225_309MTAAXX:5:1:419:260/2      -       XII     1027676   

 CATATTCTTGAATCAATGACGTGGTCAAAGACTCTG     
 5AA<AA?:AAAA?AAAAAAAA:AAAAAAAAAAAAAA    0        

HWI-EAS225_309MTAAXX:5:1:1436:122/1     +       II      177542  
 GTTGTGTTATACTTCTTAGAAAAGAGGCAAAGAGGT    
 CCCCCCCCCCCCCCCCCC<CABCACAACCC:?4?<<    0        

HWI-EAS225_309MTAAXX:5:1:1436:122/2     -       II      177649   
 TTCGTTTCTCGAAATTTTTCGTTGTCCTATTTTCTT    ? 
 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA    0        

HWI-EAS225_309MTAAXX:5:1:1088:946/2     +       XII     457916   
 TACACTCTTGACCAGCGCACTCCGTCACCCTACGCT     
 ????<1?+?8;??4<?0:<;;??40:&87&*(8,&,    1         
 29:A>C,33:C>G,34:A>C 

[...] 



Bowtie output 

The 'bowtie' aligner outputs each alignment on a separate line.  Each line is a 
collection of 8 fields separated by tabs; from left to right, the fields are: 

1. Name of read that aligned 
2. Orientation of read in the alignment, '-' for reverse complement, '+' otherwise   
3. Name of reference sequence where alignment occurs, or ordinal ID if no 

name was provided 
4. 0-based offset into the reference sequence where leftmost character of the 

alignment occurs 
5. Read sequence (reverse-complemented if orientation is '-') 
6. Read qualities (reversed if orientation is '-') 
7. Reserved 
8. Comma-separated list of mismatch descriptors.  If there are no mismatches in 

the alignment, this field is empty. A single descriptor has the format  
offset:reference-base>read-base. The offset is expressed as a 0-based 
offset from the high-quality (5') end of the read. 



Bowtie: Useful options 

Bowtie has a number of useful optional features, 
e.g.: 

•  Report more than one match 
•  Convert from various quality scales 
•  Give maximum Q distance 
•  Specify seed length 
•  Maq- or SOAP-like alignment policy 
•  Collect unmapped reads in a file 
•  Multithread to make use of multi-core CPUs 
•  ... 



Step 3a: Convert to SAM format 

•  Bowtie does not come with a SNP caller. We 
convert to the SAM (Sequence Alignment/Map) 
format, so that we can use the SAMtools. 

bowtie2sam.pl StrainA.bwtout >StrainA_u.sam 

(The conversion script is distributed with SAMtools.) 



Step 3b: Further preparations for SAMtools 

•  Index the reference FASTA file, so that SAMtools can access it 
quickly at random positions: 

samtools faidx Sac[...]el.fa 
(This adds a short file Sac[...]el.fa.fai) 

We can now easily get subsequences, e.g. 
samtools faidx Sac[...]el.fa III:10000-12000 

•  Convert the SAM file into the binary SAM (BAM) format for fast 
processing: 

samtools import Sac[...]el.fa             \ 
 StrainA.sam StrainA.bam 

•  Sort the reads by genomic position: 
samtools sort  StrainA.bam StrainA_sorted.bam 



Step 4: Inspect the alignment 

SAMtools offers two tools to inspect the alignment 
•  pileup  (streaming output) 
•  tview  (interactive tool) 

Pileup performs three functions: 
•  display the alignment  
•  call the consensus sequence and calculate SNP 

quality scores (i.e., p values) 
•  Call small indels 



samtools pileup -c -f Sac[...]el.fa StrainA_sorted.sam 
[...] 
I       25514   G       G       42      0       25      5       ....^:. 

CCCCC 
I       25515   T       T       42      0       25      5       .....    CC?CC 
I       25516   A       G       48      48      25      7       GGGGG^:G^:g     

CCCCCC5 
I       25517   G       G       51      0       25      8       ......,^:,      

CCCCCC1? 
I       25518   T       T       60      0       25      11      ......,,^:.^:,^:,       

CCCCCC3A<:; 
I       25519   T       T       60      0       25      11      ......,,.,,     

CCCCCC>A@AA 
I       25520   G       G       60      0       25      11      ......,,.,,     

CCCACC>A@<A 
I       25521   T       T       60      0       25      11      ......,,.,,     

CCCCCC?ACAA 
I       25522   A       A       60      0       25      11      ......,,.,,     

CCCCCC>ACAA 
I       25523   A       A       72      0       25      15      ......,,.,,^:.^:,^:,^:.   

CCCCCC;ACAAC??C 
I       25524   C       C       72      0       25      15      ......,,.,,.,,. 

SAMtools pileup output 



Step 5: Get a list of SNPs 

•  Filter out all SNPs with good quality from the 
pileup with a short Python (or Perl, or awk) script: 

import fileinput 
for line in fileinput.input(): 
    fields = line.split( "\t" ) 
    if int(fields[5]) >= 20: 
       print line, 

•  Figure out which SNPs are not common to all 
three strains, e.g., with R. 

•  Check if there are any indels: 
     samtools pileup -i -f Sac[...]el.fa StrainA_sorted.sam 



Screenshot of SAMtools tview 



ChIP-Seq and related techniques 



Coverage vectors 

<-- coverage 
vector 

Figure taken from Zhang et al., PLoS Comp. Biol. 2008 

<-- Solexa reads,  
   aligned to genome 



ChIP-Seq: Coverage vectors 

•  A coverage (or: “pile-up”) vector is an integer 
vector with on element per base pair in a 
chromosome, tallying the number of reads (or 
fragments) mapping onto each base pair. 

•  It is the essential intermediate data type in 
assays like ChIP-Seq or RNA-Seq 

•  One may ever count the coverage by the reads 
themselves, or extend to the length of the 
fragments 



Calculating coverage vectors 

Extending reads to fragments: 



Chip-Seq coverage: examples 

Figure coutesy of Christiana Spyrou (CR UK) 



ChIP-Seq: Different peak shapes 

Figures coutesy of Christiana Spyrou (CR UK) 

Transcription factor binding site 

Histone modification 



The issue with multiple reads 

If one finds several reads with the exact same 
sequenche, does this mean 

•  that many fragments from this locus were 
precipitated and often got  got cut at the exact 
same place, or 

•  that there was only a single fragment, but it was 
amplified more efficiently than fragments from 
other loci in the PCR (or more efficiently 
transcribed to cDNA)? 
•  If you consider the latter more likely, you should count 

these reads only once. However, this dramatically 
compresses your dynamic range. 



Peak-finding software 

•  In principle, peak finders developed for tiling 
arrays can still be used. 

•  There are, however, tools taylored to HTS data: 
•  [Put Mali's list here] 

•  These use a large variety of quite different 
algorithms 



Peak-finding software: Comparison 

Table coutesy of Christiana Spyrou (CR UK) 



Peak finding software: Comparison 

Figure coutesy of Christiana Spyrou (CR UK) 



Writing you own software 

•  The “glue” to combine the available tools is 
mostly missing. 

•  You will have to write your own scripts. 
•  Often used languages: 

•  Perl 
•  Python 
•  R 
•  Java 
•  C/C++ 



Pros and cons for using R 

Pro: 
•  Huge statistical library 
•  Large bioinformatics library 
•  Good plotting facilities 
•  Convenient interactive shell 
Con: 
•  Call-by-value semantics not well suited for very 

large amounts of data 
•  Slow due to lack of bytecode compiler 
•  Poor string-handling abilities 
•  Outdated OOP paradigm 



Bioconductor packages for HTS 

•  Biostrings 
•  BSGenome 
•  ShortRead 
•  TileQC 
•  GenomeGraphs 
•  HilbertVis 
•  TileQC 
•  ChipSeq 
•  edgeR 


