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Input, Quality Assessment, and Pre-processing

Fast Track

• Identify CEL files.

> fls <- list.files("my/directory", ".*CEL")

• Process CEL files using RMA (robust multi-array average).

> eset <- justRMA(filenames = fls)

End result: an ExpressionSet instance suitable for down-stream
analysis.

A more relaxed journey

• Input raw data

> library(affy)

> aBatch <- ReadAffy(filenames = fls)

• Perform quality assessment

> library(arrayQualityMetrics)
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> outputDirectory <- tempfile()

> arrayQualityMetrics(aBatch, outputDirectory)

> browseURL(file.path(outputDirectory, "QMreport.html"))

Take appropriate actions based on the quality assessment.

• Custom background correct, normalize, and summarize probes.

> eset <- expresso(Dilution, bgcorrect.method="rma",

+ normalize.method="constant",

+ pmcorrect.method="pmonly",

+ summary.method="avgdiff")

End result: an ExpressionSet instance suitable for down-stream
analysis.
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Importing and Exploring Data with ReadAffy

A sample data set:

> library("affydata")

> data(Dilution)

> Dilution

AffyBatch object

size of arrays=640x640 features (35221 kb)

cdf=HG_U95Av2 (12625 affyids)

number of samples=4

number of genes=12625

annotation=hgu95av2

notes=
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• CEL files contain one observation per spot

• CDF files map from spot locations to probeset and ultimately to
the identity of the gene being probed

• Bioconductor “annotation” packages map from probe sets to
gene and other annotations.

• Tab-delimited, database, or other files provide phenotypic
information.
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Phenotypic Data

• Coordinated tracking of assay and phenotype data helps avoid
mislabeling.

• phenoData reports phenotypic information; this can be added
when the CEL files are input using ReadAffy.

• pData accesses phenotypic information.

> pData(Dilution)

liver sn19 scanner

20A 20 0 1

20B 20 0 2

10A 10 0 1

10B 10 0 2

• varMetadata describes what the columns of pData represent, in
this case micrograms of liver (liver) or central nervous system
(sn19) RNA hybridized to the array, and scanner ID number.
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Probe Intensities

• hist and boxplot can be used to examine raw probe intensity
behavior across arrays.

• Differences between arrays in the shape or center of the
distribution often highlight the need for normalization.

> hist(Dilution)

> boxplot(Dilution)
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Figure 1: a) Density estimates of data from the dilution experiment.
The x-axis is on a logarithmic scale (base 2). b) Box-plots.
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Probe-level Data

pm and mm access probe level data.

> pm(Dilution, "1001_at")[1:3, ]

20A 20B 10A 10B

1001_at1 128.8 93.8 129.5 73.8

1001_at2 223.0 129.0 174.0 112.8

1001_at3 194.0 146.8 155.0 93.0

We can plot intensities of probe 1001_at with

> matplot(pm(Dilution, "1001_at"), type = "l",

+ xlab = "Probe Number", ylab = "PM Probe intensity")

> matplot(t(pm(Dilution, "1001_at")), type = "l",

+ xlab = "Array Number", ylab = "PM Probe intensity")

Notice the large probe effects. Variability between probes is larger
than the variability between arrays.
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Figure 2: Examining the probe response pattern for a particular
probeset a) across probe or b) across arrays.
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MA Plots

• The MA plot is a rotated version of a scatter plot. The
rotation helps to detect patterns as deviations from horizontal,
rather than diagonal.

• Instead of ploting two vectors Y2,j versus Y1,j , we plot
Mj = Y2,j − Y1,j versus Aj = (Y2,j + Y1,j)/2.

• if Y1 and Y2 are logarithmic expression values, then

– Mj represents fold change for gene j

– Aj represents average log intensity for gene j.

> op = par(mfrow = c(2, 2))

> MAplot(Dilution, plot.method = "smoothScatter",

+ pch = 20)

> par(op)
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Figure 3: An MA plot for the Dilution data. Scatterplots were com-
puted using the smoothScatter function.
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MA Plots

• If most genes are not differentially expressed, the loess curves
should be close to the horizontal line M = 0

• Non-linearity in the loess curve indicates a relationship
between differential expression (M) and average intensity (A).
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Quality Assessment

• Packages providing quality assessment functionality: affyPLM

(probe-level models); simpleaffy (implementing Affymetrix
recommendations); arrayQualityMetrics (diverse arrays and data
types).

• We load the ALLMLL example data (an AffyBatch instance)
and take a subset of it.

> library("ALLMLL")

> data(MLL.B)

> Data <- MLL.B[, c(2, 1, 3:5, 14, 6, 13)]

> sampleNames(Data) <- letters[1:8]
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QA - Metrics

Affymetrix proposes a number of different quality metrics.

• Average Background: the average of the 16 background values.

• Scale Factor: The constant βi which is the ratio of the trimmed
mean for array i to the trimmed mean of the reference array.

• Percent Present: the percentage of spots that are present
according to Affymetrix detection algorithm.

• 3′/5′ ratios: for different quality control probe sets, such as
β-Actin and GAPDH, each represented by 3 probesets, one
from the 5′ end, one from the middle and one from the 3′ end of
the targeted transcript. The ratio of the 3′ expression to the 5′

expression for these genes serves as a measure of RNA quality.
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QA - Example

We start by loading simpleaffy and calling the qc function

> library("simpleaffy")

> Data.qc <- qc(Data)

The average background for each array

> avbg(Data.qc)

a b c d e

68.18425 67.34494 42.12819 61.31731 53.64844

f g h

128.41264 49.39112 49.25758

should be comparable to each other. Notice the large background
value for array f. This might be indicative of a problem.
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QA - Example

The scale factors

> sfs(Data.qc)

[1] 9.765986 4.905489 10.489529 7.053323

[5] 7.561613 2.475224 13.531238 8.089458

should be within 3-fold of each other. In this example there
appears to be a problem with, for example, arrays f and g. The
percentage of present calls

> percent.present(Data.qc)

a.present b.present c.present d.present e.present

21.65158 26.53124 25.58181 23.53279 23.35615

f.present g.present h.present

25.25061 17.96423 24.40274

should be similar for replicate samples, with extremely low values
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being a possible indication of poor quality. Finally, the 3′/5′ ratios
for the first two quality control probesets should be less than 3:

> ratios(Data.qc)[, 1:2]

actin3/actin5 actin3/actinM

a 0.9697007 0.12291462

b 0.3235390 -0.19439139

c 0.4661537 -0.14331962

d 1.2567868 0.15861351

e 0.6036608 0.02095918

f 0.6715308 0.02916033

g 0.3798125 -0.15918419

h 0.4850414 -0.17911051
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QA - RNA Degradation

• RNA degradation plots inform us as to whether there are big
differences in RNA degradation between arrays.

• The amount of degradation (slope of the lines) is not that
important, but rather whether one (or more) lines have very
different slopes, or other features, than the others

• These differences can manifest themselves in altered estimates
of expression.

• For any single probeset the probe effects dominate even the
most dramatic signs of degradation; a 3′/5′ trend only becomes
apparent on the average over large numbers of probesets.
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Figure 4: Each line represents one of 6 HG-U133A chips and shows
the mean intensity by probeset position. Intensities have been shifted
from original data for a clearer view, but slope is unchanged.
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QA - Relative Log Expression (RLE)

• Compute the estimates (on a log scale) of expression θ̂gi for
each gene g on each array i,

• Compute the median value across arrays for each gene, mg,

• Define relative expression as Mgi = θ̂gi −mg.

• Display relative expressions as a boxplot for each array.

• An array that has problems will either have larger spread, or
will not be centered at M = 0, or both.
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QA - Normalized Unscaled Standard Error (NUSE)

• Estimate the standard error for each gene on each array from
the PLM fit.

• Account for variability between genes by adjusting the
standard error estimates so that the median across arrays is 1
for each gene.

NUSE
(
θ̂gi

)
=

SE
(
θ̂gi

)
medi

(
SE

(
θ̂gi

)) .
• Low quality arrays are those that are significantly elevated or

more spread out, relative to the other arrays; NUSE values are
not comparable across data sets
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Figure 5: Interquartile ranges of RLE (a) and box-and-whiskers
plots of NUSE values (b) for the ALLAML data.
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QA - Interpretation of RLE and NUSE

• Array 1 shows fairly substantial problems in both the NUSE
and RLE plots

• This array seems to be enough different from the others that its
use in the analysis is suspect.
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Pre-processing

• Preprocessing Affymetrix expression arrays usually involves
three steps:

1. Background correction.

2. Normalization.

3. Summarization: from probes to probesets.

• Bioconductor implements a wide variety of methods for each of
these steps.

• Routines for background correction and normalization usually
take an AffyBatch as input and return a processed AffyBatch.

• Routines for summarization produce ExpressionSet objects
containing expression summary values.

25



Background Correction

• RMA convolution: detailed below.

• MAS 5.0: adjust probe intensities based on weighted average
local background intensities.

• Ideal Mismatch: subtract mismatch intensities, adjusted to be
smaller than perfect match intensities, from the PM intensities.

• Etc.
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Background Correction - RMA Convolution

• MM probes are problematic (e.g., signal larger than PM), so. . .

• Correct PM values, array by array, using the empirical
distribution of probe intensities.

• Observed PM probes are modeled as the sum of a noise
component, B ∼ N(µ, σ2) and a signal component,
S ∼ Exp(α).

• To avoid the possibility of negatives values, truncate the
Normal distribution at zero.

• bg.correct applies RMA to an AffyBatch object.

> Dilution.bg.rma <- bg.correct(Dilution,

+ method = "rma")
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Normalization

• Goal: make measurements from different arrays comparable.

• Linear: scale normalization.

• Non-linear: cross-validated splines (Schadt et al 2001), running
median lines (Li and Wong, 2001), loess smoothers (Bolstad et
al.)

• Quantile: imposes the same empirical distribution of intensities
to each array.

• normalize.methods displays available methods.

• normalize or specialized functions (e.g., in the vsn package)
perform normalization.
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Normalization - Linear

Pick a column of X to serve as baseline array, say column j.
Compute the (trimmed) mean of column j. Call this X̃j .
for i = 1 to n, i 6= j do

Compute the (trimmed) mean of column i. Call this X̃i.
Compute βi = X̃j/X̃i.
Multiply elements of column i by βi.

end for

An AffyBatch can be scale normalized using the following code:

> Dilution.norm.scale <- normalize(Dilution,

+ method = "constant")
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Normalization - Non-Linear

Pick a column of X to serve as the baseline array, say column j.
for i = 1 to n, i 6= j do

Fit a smooth non-linear relationship mapping column i to the
baseline j. Call this f̂i

Normalized values for column j are given by f̂i (Xj)
end for

Non-linear normalization can be performed using the code below.

> Dilution.norm.nonlinear <- normalize(Dilution,

+ method = "invariantset")
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Normalization - Quantile

Given n vectors of length p, form X, of dimension p× n, where
each array is a column.
Sort each column of X separately to give Xs.
Take the mean, across rows, of Xs and create X ′

s, an array of the
same dimension as X, but where all values in each row are equal
to the row means of Xs.
Get Xn by rearranging each column of X ′

s to have the same
ordering as the corresponding input vector.

To apply this procedure use the code below.

> Dilution.norm.quantile <- normalize(Dilution,

+ method = "quantiles")
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Normalization - VSN

• Variance Stabilizing Normalization (VSN) combines
background correction and normalization.

• ‘Shares’ information across arrays to estimate background
correction parameters.

• For a data matrix xki, with probe k and array i, fit

xki 7→ hi(xki) = glog
(
xki − ai

bi

)
, (1)

where bi is the scale parameter for array i, ai is a background
offset, and glog is the generalized (attenuated) logarithm.

• Normalizes data across arrays, makes variances across
replicates approximately independent of the mean.

> library(vsn)

> Dil.vsn <- normalize(Dilution, method = "vsn")
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Summarization

• Goal: combine the multiple probe intensities for each probeset
to produce an expression value

• A variety of methods available, usually integrated with
background correction and normalization.

Combining background correction, normalization, and
summarization.

• rma and gcrma are optimized for computing specific expression
measures.

• expresso and threestep (in the affyPLM package) allow
‘mix-and-match’ pre-processing.

33



Combined - RMA and GCRMA

• RMA: convolution background correction, quantile
normalization, and a summarization based on a multi-array
model fit robustly using the median polish algorithm:

> eset <- rma(Dilution)

• justRMA processes CEL files directly and more efficiently.

• GCRMA computes an affinity measure using probe sequence
information, and uses this for background correction.

> library("gcrma")

> Dil.expr <- gcrma(Dilution)

• justGCRMA compute expression measures directly from CEL files.
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Combined - expresso and threestep

• Most background adjustment, normalization and
summarization methods can be combined.

• Use bgcorrect.methods pmcorrect.methods and
express.summary.stat.methods to discover available methods
available methods.

• threestep implemented in compiled code, so faster than
expresso.

Example: compute expression measures where the ideal mismatch
is subtracted from PM, quantile normalization occurs between
arrays, and probesets are summarized using a robust average.

> library("affyPLM")

> eset <- threestep(Dilution, background.method = "IdealMM",

+ normalize.method = "quantile", summary.method = "tukey.biweight")
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Summary

This presentation:

• Structured data types (e.g., AffyBatch, ExpressionSet) help
keep complex data organized throughout analysis.

• Quality assessment and pre-processing tools provide extremely
detailed and flexible access to data. These tools rely on the
statistical, graphical, scripting, and interactive capabilities of R.

Elsewhere in Bioconductor:

• ≈ 350 packages available, organized into software views, with
key packages highlighted for particular work flows.

• Support for many different platforms (e.g., one- and two
channel, Affy, Agilent, Nimblegen, Illumina) and analyses (e.g.,
Expression, miRNA, tiling, SNP).
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