Using image data for statistical analysis and modeling

Wolfgang Huber &

Gregoire Pau

EMBL

European Molecular Biology Laboratory

EBImage

Fast and user-friendly image processing toolbox for R

Provides functionality for

- Reading/writing/displaying images
- Image processing (pixel arithmetic, filtering, geometric transformations)
- Object segmentation

Goals

Process multidimensional images

Extract quantitative descriptors from (microscopy) images

What it is and isn't:

the package offers basic infrastructure for working with images in RAM as matrices.

Incomplete w.r.t. sophisticated algorithms (we aim to make it easier to call out to ImageJ plugins)

Does not support huge images (but we're planning to better integrate working with images in netcdf)

Your contributions are welcome:

Ocontribute a function + man page

Owrite your own package on top of EBImage

Image representation

Multidimensional array of intensity values Seamless integration with R's native arrays

21	20	21	28	43	53	67	54
12	31	30	41	52	71	98	78
11	14	33	49	72	110	133	144
12	19	29	39	57	74	121	100
16	21	28	31	59	74	98	74
18	23	27	38	50	61	62	49
17	19	24	39	42	48	47	52
16	15	23	37	41	38	36	41

Lena: 512x512 matrix

Image representation

- **Multidimensional array**
- 2 first dimensions: spatial dimensions
- Other dimensions: replicate, color, time point, condition, z-slice...

Nuclei 4 replicates

R

r0

r1

r2

r3

G

В

Image rendering

Rendering dissociated from representation

2 rendering modes

as sequence of grayscale images

as color image

Nuclei 4 replicates

r0

r1

r2

Lena 3 color channels

R

В

10

Functions readImage(), writeImage()

Reads an image, returns an array

Supports more than 80 formats (JPEG, TIFF, PNG, GIF, ...)

Supports HTTP, sequences of images

Example: format conversion

```
library('EBImage')
x = readImage('sample-001-02a.tif')
writeImage(x, 'sample-001-02a.jpeg', quality=95)
```

Display

- Function display()
- GTK+ interactive: zoom, scroll, animate
- Supports RGB color channels and sequence of images

x = readImage('lena.png')
display(x)

Pixel arithmetic

Seamless integration with R's native arrays E.g. adjust brightness, contrast and gamma-factor

Х

x+0.5 3*x (x+0.2)^3

Spatial transformations

Cropping, thresholding, resizing, rotation

x[45:90, 120:165]

resize(x, w=128)

x>0.5

Thresholding

Global thresholding Primitive building block for object segmentation

x>0.3

Linear filter

Fast 2D convolution with filter2() Low-pass filter: smooth images, remove artefacts

Х

 $= \operatorname{array}(1, \operatorname{dim}=c(9, 9))$ f = f/sum(f)filter2(x, f)

Linear filter

Fast 2D convolution with filter2() High-pass filter: detect cell edges

Х

 $= \operatorname{array}(1, \operatorname{dim}=c(9, 9))$ f f[3, 3] = -8= filter2(x, f) V

 $\mathbf{x} * \begin{vmatrix} 1 & -1 & 1 \\ 1 & -8 & 1 \end{vmatrix}$

Example: segmentation of nuclei

- **Global thesholding + labeling**
- Function bwlabel
- Labels connected sets (objects) in a binary image
- The pixels of each connected object are set to a unique integer value
- max(bwlabel(x)) gives the number of objects, table(bwlabel(x)) their sizes

Better segmentation

Adaptive thresholding + mathematical opening + holes filling

- xb = thresh(x[,,1], 10, 10, 0.05)
- kern = makeBrush(5, shape='disc')
- xb = dilate(erode(xb, kern), kern)

xb

Nucleus morphology quantification

Function getFeatures

- Extracts object features: geometric, image moment based (Zernike moments), texture based (Haralick)
- Direct interpretation (e.g.: DNA content) or for classification/ clustering

41 features

		g.x	g.y	g.s	g.p	g.pdm	g.pdsd	g.effr	g.acirc
	[1,]	123.1391	3.288660	194	67	9.241719	4.165079	7.858252	0.417525
	[2,]	206.7460	9.442248	961	153	20.513190	7.755419	17.489877	0.291363
	[3,]	502.9589	7.616438	219	60	8.286918	1.954156	8.349243	0.155251
	[4,]	20.1919	22.358418	1568	157	22.219461	3.139197	22.340768	0.116709
_	[5,]	344.7959	45.501992	2259	233	35.158966	15.285795	26.815332	0.501106
	[6,]	188.2611	50.451863	2711	249	28.732680	6.560911	29.375808	0.168941
$\overline{}$	[7,]	269.7996	46.404036	2131	180	26.419631	5.529232	26.044546	0.193805
U	[8,]	106.6127	58.364243	1348	143	21.662879	6.555683	20.714288	0.264836
	[9,]	218.5582	77.299007	1913	215	25.724580	6.706719	24.676442	0.243073
	[10,]	19.1766	81.840147	1908	209	26.303760	7.864686	24.644173	0.304507
_	[11,]	6.3558	62.017647	340	68	10.314127	2.397136	10.403142	0.188235
0	[12,]	58.9873	86.034128	2139	214	27.463158	6.525559	26.093387	0.207106
	[13,]	245.1087	94.387405	1048	123	18.280901	2.894758	18.264412	0.112595
	[14,]	411.2741	109.198678	2572	225	28.660816	7.914664	28.612812	0.224727
	[15,]	167.8151	107.966014	1942	160	24.671533	2.534342	24.862779	0.084963
	[16,]	281.7084	121.609892	2871	209	31.577270	6.470767	30.230245	0.128874
	[17,]	479.2334	143.098241	1649	183	23.913630	6.116630	22.910543	0.248635
	[18,]	186.5930	146.693122	2079	199	27.280908	6.757808	25.724818	0.195286
	[19,]	356.7303	148.253418	3145	285	34.746206	11.297632	31.639921	0.313513
	[20,]	449.2436	147.798319	119	37	5.873578	1.563250	6.154582	0.243697

Installation

EBImage requires the following softwares/libraries to be installed:

- •gtk+-2.0
- ImageMagick
- •pkg-config (on Mac OS X and Linux)

This has been cumbersome for some users ... we are planning to remove these dependencies in exchange for one on Qt (which we would share with several other R packages)

Summary: EBImage

Powerful and fast package to compute with images in R

- Aim: Automation of basic tasks such as image transformation, segmentation (object identification) and quantitative feature extraction
- Design: manipulate images just like arrays in R (and in fact, use much of the implementation)

Yeast, brightfield

Yeast, GFPtagged protein HeLa, Höchst +Actin+Tubulin An example application workflow

RNAi induced cell morphology phenotypes in human cells

- with F. Fuchs, C. Budjan, Michael Boutros (DKFZ)
- Genomewide RNAi library (Dharmacon, 22k siRNA-pools)
- HeLa cells, incubated 48h, then fixed and stained
- Microscopy readout: DNA (DAPI), tubulin (Alexa), actin (TRITC)

Molecular Systems Biology 6:370 (2010) www.cellmorph.org

siRNA perturbation phenotypes observed by automated microscopy

22839 wells, 4 images per well each with DNA, tubulin, actin, 1344 x 1024 pixel at 12 bit

Identifying (segmenting) the nuclei

Nuclei are extracted from the DNA channel H Adaptive local thresholding: Nmask = (H * w) > σ H Connected set labelling + morphological opening

PLK3

Identifying (segmenting) the nuclei

Nuclei are extracted from the DNA channel H Adaptive local thresholding: Nmask = (H * w) > σ H Connected set labelling + morphological opening

PLK3

Identifying (segmenting) the nuclei

Nuclei are extracted from the DNA channel H Adaptive local thresholding: Nmask = (H * w) > σ H Connected set labelling + morphological opening

PLK3

Segmentation of cells

Nuclei are relatively easy.

But cells touch.

How do you draw reasonable boundaries between cells' cytoplasmata?

But we only used the nuclei. The boundaries are artificially straight.

How can we better use the information in the actin and tubulin channels?

dx

Voronoi segmentation on the image manifold

Segmentation result

Fully automatic on all 88k images Detailed resolution of boundaries also for adjacent cells

Would not deal with overlapping cells (multilayer, tissue)

Combining channels and segmentation masks

Extracting quantitative cell descriptors

translation and rotation invariant descriptors

- geometry (intensity, size, perimeter, eccentricity...)
- texture (Haralick, Zernike moments...) on each channel
- relative positions, joint distribution moments

Zernike Moments

$$A_{mn} = \frac{m+1}{\pi} \int_{\substack{\text{unit}\\\text{circle}}} \frac{e^{-in\theta} Z_{mn}(\mathbf{r}) f(\mathbf{r},\theta) d\theta d\mathbf{r}}{\text{Zernike basis Image}}$$

|n|≤m, m-|n| even |A_{mn}| rotation invariant

careful: f a discrete image, pixelisation of the circle

Features

Cell size

Distribution of cell sizes

Cell size (in um^2)

Cell classification

using the numeric descriptors supervised learning, SVM

8 classes and a training set of ~3000 cells:

Cell classification

Cell classification

е

True classes

BC D м N Ρ z Predicted classes BC D м N 1. P z Acc% 98.2 96.9 100 99.5 98.5 97.8

Each siRNA is characterized by its "phenotypic profile"

number of cells	128
average intensity	1054.8
average nuclear intensity	1225.6
average cell size	842.3
average nuclear size	278.7
average eccentricy	0.649
avg. nuclear / cell size	2.91
#AF (actin fibers)	2
# BC (big)	7
# M (mitotic)	15
# LA (lamellipodia)	0
# P (with protrusions)	17
# Z (telophase)	2

How do you measure distance and similarity in13-dimensional phenotypic profile space?

Similarity depends on the choice and weighting of descriptors

Distance metric learning

- Standard distances are not satisfying
- Weighted Euclidean: $d(x, y) = sqrt(\Sigma_i w_i(x_i y_i)^2)$
- General Euclidean: $d(x, y)^2 = (x-y)^t A(x-y)$ (Mahalanobis: $A = \Sigma^{-1}$)
- Cause: x_i contains the genetic effects as well as (unknown) experimental noise
- **Distance metric learning:** learning a parametric distance
- Using training set of gene pairs that are supposed to be "similar" and "dissimilar"
- Optimise parameters such that similar pairs have small distances, dissimilar pairs large.

Parametric sigmoid transformation of each phenotype descriptor into a score∈[0,1]

2 parameters α , β for each of the 13 descriptors: measure its scale and interesting range

phenotypic distance: L₁ distance between two transformed phenotypic profile vectors

How can we fit the best transformation parameters?

STRING is database of pairwise gene-gene associations.

Distance between gene pairs linked by STRING should on average (i.e. statistically) be lower than between random genes.

Solve a high-dimensional optimisation problem to obtain the best set of αs, βs

Metric learning

2

ç

S

0

0

phenotype descriptor

 $f(x) = 1 + e^{\beta(x-\alpha)}$

Learned:

transformat

13 x 2

ion

Frequency

Training: network: 100,000s of ostensible proteinprotein similarities

SIKINA pnenoprints

Among the 22839 siRNA pools, 1891 with non-null phenoprints.

0

CEP164

DONSON

NUF2

SON

Example phenotypes

Many binucleated

Many large

Example phenotypes

Condensed

Elongated

Follow Up

Such a map is a resource to generate hypotheses.

We characterized previously "untouched" genes from neighbourhoods with many genes in DNA damage response and genomic integrity.

Image-based phenotyping turned out to be a powerful method for functional discovery.

Greg Pau, Florian Fuchs, Dominique Kranz, Christoph Budjan, Oleg Sklyar, Thomas Horn, Michael Boutros

Some conclusions & outlook

Automated phenotype quantification of cellular populations

Multiparametric imaging

~92000 images: 660 h CPU time (but trivially parallelised - one night on the cluster)

Coming soon: imageHTS

Data and workflow management for automated analysis of cell-based imaging screens, based on cellHTS2 and EBImage

Distributed and hierarchical (well, cell, features) web data access

EBImage demo

A nuclei and cell segmentation workflow demo

Vignette of the imageHTS package:

http://www-huber.embl.de/users/whuber/pub