Efficient \textit{R} Programming

Martin Morgan

Fred Hutchinson Cancer Research Center

30 July, 2010
Motivation

Challenges

▶ Long calculations: bootstrap, MCMC,
▶ Big data: genome-wide association studies, re-sequencing,
▶ Long × big: . . .

Solutions

▶ Avoid R programming pitfalls – very significant benefits.
▶ Parallel evaluation, especially ‘embarrassingly parallel’
▶ Large data management
Outline

Programming pitfalls
 Pitfalls and solutions
 Measuring performance
 Case Study: GWAS

Large data management
 Text, binary, and streaming I/O
 Data bases and netCDF

Parallel evaluation
 Embarrassingly parallel problems
 Packages and evaluation models
 Case Study: GWAS (continued)

Resources
Programming pitfalls: easy solutions

▶ Input only required data

```r
> colClasses <-
  +  c("NULL", "integer", "numeric", "NULL")
> df <- read.table("myfile", colClasses=colClasses)
```

▶ Preallocate-and-fill, not copy-and-append

```r
> result <- numeric(nrow(df))
> for (i in seq_len(nrow(df)))
+  result[[i]] <- some_calc(df[i,])
```

▶ Vectorized calculations, not iteration

```r
> x <- runif(100000); x2 <- x^2
> m <- matrix(x2, nrow=1000); y <- rowSums(m)
```

▶ Avoid unnecessary character creation operations, e.g., `USE.NAMES=FALSE` in `sapply`, `use.names=FALSE` in `unlist`.
Programming pitfalls: moderate solutions

- Use appropriate functions, often from specialized packages.

  ```
  > library(limma)  # microarray linear models
  > fit <- lmFit(eSet, design)
  ```

- Identify appropriate algorithms, e.g., `%in%` is $O(N)$, whereas naive might be $O(N^2)$

  ```
  > x <- 1:100; s <- sample(x, 10)
  > inS <- x %in% s
  ```

- Use C or Fortran code. Requires knowledge of other programming languages, and how to integrate these into R
Measuring performance: timing

- Use `system.time` to measure total evaluation time
 - `gcFirst=TRUE` for ‘garbage collection’
- Use `replicate` to average over invocations

```r
> m <- matrix(runif(200000), 20000)
> replicate(5, system.time(apply(m, 1, sum))[[1]])
[1] 0.183 0.177 0.183 0.181 0.178
> replicate(5, system.time(rowSums(m))[[1]])
[1] 0.001 0.001 0.001 0.001 0.001
```

- Cautionary tale: http://tinyurl.com/29bd6xv
Measuring performance: comparison

- identical and all.equal ensure that ‘optimizations’ produce correct results!

```r
> res1 <- apply(m, 1, sum)
> res2 <- rowSums(m)
> identical(res1, res2)
[1] TRUE
> identical(c(1, -1), c(x=1, y=-1))
[1] FALSE
> all.equal(c(1, -1), c(x=1, y=-1), check.attributes=FALSE)
[1] TRUE
```
Measuring execution time: Rprof

```r
> tmpf = tempfile()
> Rprof(tmpf)
> res1 <- apply(m, 1, sum)
> Rprof(NULL); summaryRprof(tmpf)
```

$by.self

<table>
<thead>
<tr>
<th></th>
<th>self.time</th>
<th>self.pct</th>
<th>total.time</th>
<th>total.pct</th>
</tr>
</thead>
<tbody>
<tr>
<td>"apply"</td>
<td>0.16</td>
<td>80</td>
<td>0.20</td>
<td>100</td>
</tr>
<tr>
<td>"FUN"</td>
<td>0.02</td>
<td>10</td>
<td>0.02</td>
<td>10</td>
</tr>
<tr>
<td>"lapply"</td>
<td>0.02</td>
<td>10</td>
<td>0.02</td>
<td>10</td>
</tr>
<tr>
<td>"unlist"</td>
<td>0.00</td>
<td>0</td>
<td>0.02</td>
<td>10</td>
</tr>
</tbody>
</table>

$by.total

<table>
<thead>
<tr>
<th></th>
<th>total.time</th>
<th>total.pct</th>
<th>self.time</th>
<th>self.pct</th>
</tr>
</thead>
<tbody>
<tr>
<td>"apply"</td>
<td>0.20</td>
<td>100</td>
<td>0.16</td>
<td>80</td>
</tr>
<tr>
<td>"FUN"</td>
<td>0.02</td>
<td>10</td>
<td>0.02</td>
<td>10</td>
</tr>
<tr>
<td>"lapply"</td>
<td>0.02</td>
<td>10</td>
<td>0.02</td>
<td>10</td>
</tr>
<tr>
<td>"unlist"</td>
<td>0.02</td>
<td>10</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>
Measuring memory use: tracemem

- Enable memory profiling

```r
> ~/src/R-devel/configure --help
> ~/src/R-devel/configure --enable-memory-profiling
> make -j
```

- Copy-on-change semantics

```r
> x <- 1:10; tracemem(x)
[1] "<0x1b1a8f8>"
> y <- x  # no change, so no copy
> x[1] <- 2L  # x, y now differ, so copy
tracemem[0x1b1a8f8 -> 0x1b1a8a0]:
```
Measuring memory use: \texttt{tracemem}

- Copying in \textit{R} functions

```r
> l <- list(a=1:10, b=1:10); tracemem(l$a)
[1] "<0x1131ce0>"
> df0 <- as.data.frame(l)
tracemem[0x1131ce0 -> 0x1131bd8]: eval as.data.frame.list as.data.frame
tracemem[0x1131bd8 -> 0x1131a20]: data.frame eval eval as.data.frame.list as.data.frame
> df1 <- data.frame(a=l$a, b=l$b)
tracemem[0x1131ce0 -> 0x11332c0]: data.frame
tracemem[0x11332c0 -> 0x1133160]: as.data.frame.integer as.data.frame
> identical(df0, df1)
[1] TRUE
```
Case study: GWAS

- Subset of genome-wide association study data

```r
> fname1 <- system.file("extdata", "gwas_2.rda", +                             package="EfficientR")
> load(fname1)
> gwas[1:2, 1:8]
```

<table>
<thead>
<tr>
<th>CaseControl</th>
<th>Sex</th>
<th>Age</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
</tr>
</thead>
<tbody>
<tr>
<td>id_1</td>
<td>Case</td>
<td>M</td>
<td>40</td>
<td>AA</td>
<td>AB</td>
<td>AA</td>
<td>AB</td>
</tr>
<tr>
<td>id_2</td>
<td>Case</td>
<td>F</td>
<td>33</td>
<td>AA</td>
<td>AA</td>
<td>AA</td>
<td>AA</td>
</tr>
</tbody>
</table>
GWAS and glm

- Interested in fitting generalized linear model to each SNP

```r
> snp0 <- function(i, gwas) {
+   snp <- gwas[[i+3L]]
+   glm(CaseControl ~ Age + Sex + snp,
+       family=binomial, data=gwas)$coef
+ }
> system.time(sapply(1:10, snp0, gwas))

    user  system elapsed
   1.700   0.102   1.919
```
GWAS case study: further directions

glm can be optimized for SNPs

- Build the design matrix for CaseControl ~ Age + Sex once, rather than once per SNP
- Use the estimate without the SNP as a starting point
- *snpMatrix* fits GLMs very efficiently

Outcome

- ~ 1000 SNPs per second

Important lessons

- Careful optimization can often greatly reduce evaluation time
- Others may likely have done the work for you!
Outline

Programming pitfalls
- Pitfalls and solutions
- Measuring performance
- Case Study: GWAS

Large data management
- Text, binary, and streaming I/O
- Data bases and netCDF

Parallel evaluation
- Embarrassingly parallel problems
- Packages and evaluation models
- Case Study: GWAS (continued)

Resources
Large data management

Putting appropriate data in memory
▶ An R analysis can make multiple copies of each data set
▶ Limits performance (I/O, but also calculations)
▶ Wastes system resources (e.g., decreasing the number of parallel tasks that can be executed)

Solutions
▶ Text versus R binary files
▶ ‘Stream’ processing
▶ Data base use
▶ High-performance numeric storage
Text versus R binary files

- Text is slower than compressed binary
- Compressed binary is slower than binary

```r
> ftmp <- tempfile()
> write.csv(gwas, ftmp)
> system.time(read.csv(ftmp, row.names=1))[[3]]
[1] 8.078

> save(gwas, file=ftmp)
> replicate(5, system.time(load(ftmp, new.env()))[[3]])

> save(gwas, file=ftmp, compress=FALSE)
> replicate(5, system.time(load(ftmp, new.env()))[[3]])
[1] 1.035 1.031 1.032 1.030 1.049

> unlink(ftmp)
```
‘Stream’ processing

- Read in a chunk, process, read in next chunk
- Use ‘connections’ to keep file open between chunks
- Good for very large data sets (if necessary)
- A few packages, e.g., \textit{biglm}, exploit this model
- See \texttt{readScript("fapply.R")}
Data bases

SQL

- Represent data in a SQL database
- Best for *relational* (structured) data of moderate (e.g., millions of rows) size
- Not the best solution for, e.g., array-like numerical data

Use

- `DBI` package provides abstract interface
- `RSQLite` (built-in to R), `RMySQL`, `RPostgreSQL`, ... provide implementations

Example: *RSQLite* set-up

```r
> db0 <- tempfile()
> library(RSQLite)
> drv <- dbDriver("SQLite")
> conn <- dbConnect(drv, dbname=db0)
```
GWAS metadata

Create

```
> gwasPhenotypes <- gwas[,1:3]
> dbWriteTable(conn, "gwasPhenotypes", gwasPhenotypes)

[1] TRUE
```

Retrieve

```
> q <- dbSendQuery(conn, "SELECT * FROM gwasPhenotypes")
> fetch(q, n = 2) # first 2; n = -1 for all

  row_names CaseControl Sex Age
1     id_1    Case  M  40
2     id_2    Case  F  33

> invisible(dbClearResult(q)) # close out query
```

Clean-up

```
> invisible(dbDisconnect(conn))
```
NetCDF and the *ncdf* package

NetCDF and *ncdf*

- Network Common Data Form: array-oriented scientific data
- *ncdf*: R package for NetCDF access
 - Warning: character arrays very inefficient in *ncdf*
- *ncdf4*: recent; NetCDF 4 format; not yet available for Windows

Data and library

```r
> ngwas <- local(
+   x0 <- lapply(gwas[,-(1:3)], as.integer)
+   matrix(unlist(x0, use.names=FALSE), ncol=length(x0))
+ )
> ncdf0 <- tempfile()
> library(ncdf)
```
ncdf, continued

- Define dimensions and variable

  ```r
  > sampd <- dim.def.ncdf("Sample", "id", seq_len(nrow(ngwas)))
  > snpd <- dim.def.ncdf("SNP", "id", seq_len(ncol(ngwas)))
  > snpv <- var.def.ncdf("Genotype",
                        units="1: AA, 2: AB; 3: BB",
                        dim=list(sampd, snpd),
                        missval=-1L, prec="integer")
  ```

- Create file

  ```r
  > nc <- create.ncdf(ncdf0, snpv)
  > put.var.ncdf(nc, snpv, ngwas)
  > invisible(close(nc))
  ```
ncdf, continued

- Very favorable file I/O performance

  ```
  > nc <- open.ncdf(ncdf0)
  > system.time(
  +     nc_gwas <- get.var.ncdf(nc, "Genotype")
  + )[[1]]
  
  [1] 0.361
  ```

- Easy to obtains data slices

  ```
  > g <- get.var.ncdf(nc, "Genotype", start=c(30, 100),
  +     count=c(10, 20)) # samples 30:40, snps 100:120
  > g <- get.var.ncdf(nc, "Genotype", start=c(1,1000),
  +     count=c(-1, 100)) # all samples, snps 1000:1100
  > invisible(close(nc))
  ```
Outline

Programming pitfalls
 Pitfalls and solutions
 Measuring performance
 Case Study: GWAS

Large data management
 Text, binary, and streaming I/O
 Data bases and netCDF

Parallel evaluation
 Embarrassingly parallel problems
 Packages and evaluation models
 Case Study: GWAS (continued)

Resources
‘Embarrassingly parallel’ problems

Problems that are:

▶ Easily divisible into different, more-or-less identical, independent *tasks*
▶ Tasks distributed across distinct computational *nodes*.
▶ Examples: bootstrap; MCMC; row- or column-wise matrix operations; ‘batch’ processing of multiple files, . . .

What to expect: ideal performance

▶ Execution time inversely proportional to number of available nodes: $10 \times$ speed-up requires 10 nodes, $100 \times$ speedup requires 100 nodes
▶ Communication (data transfer between nodes) is expensive
▶ ‘Coarse-grained’ tasks work best
Packages and other solutions

<table>
<thead>
<tr>
<th>Package</th>
<th>Hardware</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicore</td>
<td>Computer</td>
<td>Not Windows (doSMP soon)</td>
</tr>
<tr>
<td>Rmpi</td>
<td>Cluster</td>
<td>Additional job management software (e.g., slurm)</td>
</tr>
<tr>
<td>snow</td>
<td>Cluster</td>
<td>Light-weight; convenient if MPI not available</td>
</tr>
<tr>
<td>BLAS, pnmath</td>
<td>Computer</td>
<td>Customize R build; benefits math routines only</td>
</tr>
</tbody>
</table>

Parallel interfaces

- Package-specific, e.g., *mpi.parLapply*
- *foreach, iterators, doMC, ...*: common interface; fault tolerance; alternative programming model
General guidelines for parallel computing

- Maximize computation per job
- Distribute data implicitly, e.g., using shared file systems
- Nodes transform large data to small summary
 - E.g.: ShortRead quality assessment.
- Construct self-contained functions that avoid global variables.
- Random numbers need special care!
mallcore

- Shared memory, i.e., one computer with several cores

```r
> system.time(lapply(1:10, snp0, gwas))
  user  system elapsed
  1.672  0.016  1.687

> library(multicore)

> system.time(mclapply(1:10, snp0, gwas))
  user  system elapsed
  1.864  0.348  1.119
```
multicore: under the hood

- Operating system `fork`: new process, initially identical to current, OS-level copy-on-change.
- `parallel`: spawns new process, returns process id, starts expression evaluation.
- `collect`: queries process id to retrieve result, terminates process.
- `mclapply`: orchestrates `parallel / collect`
foreach

- foreach: establishes a for-like iterator
- %dopar%: infix binary function; left-hand-side: foreach; right-hand-side: expression for evaluation
- Variety of parallel back-ends, e.g., doMC for multicore; register with registerDoMC

```r
> library(foreach)
> if ("windows" != .Platform$OS.type) {
+   library(doMC); registerDoMC()
+   res <- foreach(i=1:10) %dopar% snp0(i, gwas)
+ }```

iterators and foreach

*iterators* package

- `iter`: create an iterator on an object
- `nextElem`: return the next element of the object
- Built-in (e.g., `iapply`, `isplit`) and customizable

```r
> snp1 <- function(snp, gwas) {
+ glm(CaseControl ~ Age + Sex + snp,
+ family=binomial, data=gwas)$coef
+ }
> snps <- gwas[,11:20]
> res <- foreach(it=iter(snps, "column")) %dopar%
+ snp1(it, gwas)
```
Rmpi on a cluster

- ‘Message passing’ interface (MPI)

Players
- slurm: allocate resources, e.g., slaloc \(-N\) 4 allocates 4 nodes for computation
- mpi: e.g., mpirun \(-n\) 1 starts a program on one node
- R and the \textit{Rmpi} package
Interactive \textit{Rmpi}: manager / worker

```
hyrax1:~> salloc -N 4 mpirun -n 1 R --interactive --quiet
salloc: Granted job allocation 239631
> library(Rmpi)
> mpi.spawn.Rslaves()
[...SNIP...]
> mpi.parSapply(1:10, function(i) c(i=i, rank=mpi.comm.rank()))
i 1 2 3 4 5 6 7 8 9 10
rank 1 1 1 2 2 3 3 4 4 4
> mpi.quit()
salloc: Relinquishing job allocation 239631
```
Manager / worker

- ‘Manager’ script that spawns workers, tells workers what to do, collates results
- Submit as ‘batch’ job on a single $R$ node
- View example script with readScript("spawn.R")

```
hyrax1:~> salloc -N 4 mpirun -n 1 \
 R CMD BATCH /path/to/spawn.R
```
Single instruction, multiple data (SIMD)

- Single script, evaluated on each node, readScript("simd.R").
- Script specializes data for specific node
- After evaluation, script specializes so that one node collates results from others

hyrax1:~> salloc -N 4 mpirun -n 4 \
   R CMD BATCH --slave /path/to/simd.R
Case study: GWAS (continued)

- Readily parallelized – glm for each SNP fit independently
- Divide SNPs into equal sized groups, one group per node
- SIMD evaluation model
- Need to manage data – appropriate SNPs and metadata to each node

Important lessons

- Parallel evaluation for real problems can be difficult
- Parallelization after optimization
- Optimize / parallelize only after confirming that no one else has already done the work!
Case study: GWAS (concluded)

Overall solution

- Optimize glm for SNPs
- Store SNP data as netCDF, metadata as SQL
- Use SIMD model to parallelize calculations

Outcome

- Initially: < 10 SNPs per second
- Optimized: \(~ 1000\) SNP per second
- 100 node cluster: \(~ 100,000\) SNP per second
Outline

Programming pitfalls
   Pitfalls and solutions
   Measuring performance
   Case Study: GWAS

Large data management
   Text, binary, and streaming I/O
   Data bases and netCDF

Parallel evaluation
   Embarrassingly parallel problems
   Packages and evaluation models
   Case Study: GWAS (continued)

Resources
Resources

- News group: https://stat.ethz.ch/mailman/listinfo/r-sig-hpc
- Key packages: *multicore*, *Rmpi*, *snow*, *foreach* (and friends); *RSQLite*, *ncdf*