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1 Introduction

The advent of high throughput techniques has resulted in the generation of large
flow cytometry (FCM) data sets. Along with the task of acquiring the data
comes the task of storing, managing, quality control, data analysis and data
summarization to a condensed form that can be interpreted by the researcher.

Open source Bioconductor packages for analysis of flow cytometry data pro-
vides a unified framework for bioinformaticians to develop methods to analyze
and interpret flow cytometry data. The packages relevant to flow cytome-
try include flowCore, flowViz, flowStats, flowQ, flowUtils, flowClust, flowFP,
flowMeans and flowMerge.

• flowCore - handles importing, storing, preprocessing and assessment of
data from flow cytometry experiments.

• flowViz - provides graphical methods for visualization of flow cytometry
data.

• flowQ - provides quality control and quality assessment tools for flow cy-
tometry data.

• flowStats - provides tools and methods to analyze flow cytometry data
that is beyond the basic infrastructure provided in the flowCore package.

• flowUtils - provides utilities, mainly to integrate foreign FCM analysis
tools.

• flowClust - implements mixture model based clustering algorithms for
FCM data.

• flowMerge - provides merging of mixture components for model-based au-
tomated gating of flow cytometry data using the flowClust framework.

• flowMeans - identifies cell populations in flow cytometry data using non-
parametric clustering and segmented-regression-based change point detec-
tion.
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• flowFP - fingerprint generation of flow cytometry data, used to facilitate
the application of machine learning and data mining tools for flow cytom-
etry

This session introduces the data structures and functions implemented in the
core flow related Bioconductor packages for handling flow data. Simple exercise
are provided to get familiar with basic operations such as transformations, gating
and visualization of data . We then proceed to sequentially gate a simple data
set using workflows implemented in the flowCore to get exposure to the more
advanced functionalities offered by these packages. Our sample data consists
of 14 patient samples from two groups treated with either drug A or B. Each
sample has been stained with CD3, CD4, CD8, CD69 and HLADr fluorescence
markers.

2 Data structures for flow cytometry data

2.1 flowFrame

The package flowCore has several data structures implemented for storing and
manipulating flow cytometry data. The basic container for storing flow data in
the flowCore package is a flowFrame.

The flowFrame data structure has three main methods for accessing and
modifying the information stored in the flowFrame.

• The exprs method can be used to access and modify the matrix containing
fluorescence intensity information. The column names of the matrix cor-
respond to the fluorescence parameter names and each row of the matrix
corresponds to a single recorded event.

• The parameters method can be used to access and modify information
regarding the stains and the range of the fluorescence parameters that
were recorded by the flow cytometer.

• The description method can be used to access the FCS keywords and
the related information that was produced by the instrument during the
measurement.

2.2 flowSet

Flow cytometry experiments typically involve data from several patients. It is
useful to have data from an experiment organized along with the meta data in-
formation. The flowCore package provides the flowSet container that organizes
several flowFrames together.

The flowSet data structure has several methods for accessing and modifying
the meta data and fluorescence parameter related information stored in the
flowSet .
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• sampleNames can be used to access/ update the names of the samples
stored in the flowSet .

• colnames can be used to access/update the fluorescence parameter names.

• The pData can be used to access and update the meta data information
for the experiment.

• transform can be used to apply a transformation to all the frames in a
flowSet .

3 Importing our example data set into a flowSet

For our example, we proceed by reading in FCS files from 14 patients and
creating a flowSet.

Exercise 1
Install the flowTrack package. Copy the files included in the data folder of the
package to your working directory. If you have installed the flowTrack package,
you can find the location of the data files as follows:

> library(flowCore)

> library(flowTrack)

> library(flowViz)

> system.file("extdata", package = "flowTrack")

To read in the flowSet we make use of the read.flowSet function. The phen-
oData information is provided as a tab delimited file. The file annotation.txt
file contains a matrix with row names corresponding to the sample names and
column names corresponding to names of the meta data variables.

In a clinical data collection process, the parameter information fields for each
flowFrame may not always be updated with the appropriate fields especially
when the samples have been run by different lab personnel or when an error
was made in the data entry process. In such cases, the corresponding fields can
be updated by using the pData and parameters methods.

Exercise 2
• Create a flowSet by reading in the supplied fcs files and annotation infor-

mation using the read.flowSet function.

• Observe the phenoData information stored in the flowSet using the pData

function.

• Update the sampleNames of the flowSet with the ”PatientID” information
from the phenoData information provided.

• Observe the parameters information for the flowData[[1]] flowFrame.
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• Update the description field for each flowFrame in the flowSet with the
stain names c(NA, NA, ”CD8”, ”CD69”, ”CD4”, ”CD3”, ”HLADr”, NA)
using the pData and parameters update methods. The description fields
for parameters like forward/side scatter and Time have are to be updated
with NA, since they are not associated with a specific staining marker.

> flowData <- read.flowSet( phenoData="annotation.txt",

+ transformation=FALSE)

> head(pData(flowData))

> sampleNames(flowData) <- pData(flowData)[,"PatientID"]

> for(i in seq_len(length(flowData))){

+ pData(parameters(flowData[[i]]))[,"desc"] <- c(NA, NA, "CD8", "CD69",

+ "CD4","CD3", "HLADr","NA")

+ }

4 Visualize and transform the data

The package flowViz has several functions available for visualizing flow cytometry
data.

4.1 Visualizing data

A typical call to the flowViz xyplot and densityplot function xyplot is shown
below.

> xyplot(y ~ x , data, xlab, ylab, main)

> densityplot( ~ x, data, xlab, ylab, main)

The arguments to the functions can be summarized in terms of

1. formula: The first argument to a lattice method is a formula. The formula
for our example is y ~ x. If the lattice method takes only a single vector
as input, the formula can be expressed as ~ x.

2. primary variables: Variables y (Y axis of the plot) and x (X axis of the
plot) that defines the lattice display separated by the ~ character.

3. xlab: label for the x axis.

4. ylab: label for the y axis.

5. main: title for the plot.
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4.2 Transforming data

A scatter plot matrix of all the parameters of the flowData[[1]] visualized
using the splom function can be observed in the Figure 1. From the figure, it
is clear that the channels FITC-A, PE-A, FL3-A, PE-CY7-A and APC-A need
some form of transformation for better visualization of the data.

Scatter Plot Matrix

FSC−A

SSC−A

FITC−A

PE−A

FL3−A

PE−Cy7−A

APC−A

Figure 1: Scatter plot for untransformed flowData

The flowCore package offers several functions for transforming flow data. The
most widely used transformations are the asinh and logicleTransform func-
tions. Data in flowFrames and flowSets can be transformed using the transform
function. The transformList object is useful for transforming several parameters
of a flowSet in one operation.

Exercise 3
• Create an object of class transformList for transforming the the fluores-

cence channels FITC-A, PE-A, FL3-A, PE-CY7-A and APC-A using the
asinh transformation.

• Transform the flowData flowSet that we created using the transform method.

• Create a scatter plot of the transformed FITC-A and PE-A channels using
the xyplot function.

• Create a density plot of the transformed FL3-A channel using the densi-

typlot function.

> tf <- transformList(colnames(flowData)[3:7], asinh)

> tData <- transform(flowData, tf)

> myplot <- xyplot( `FITC-A` ~ `PE-A`, tData,

+ main=" My xyplot of FITC-A/PE-A")
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> myplot <- densityplot( ~ `FITC-A`, tData,

+ main=" My density plot of FITC-A")
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(a) FITC-A PE-A xyplot
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(b) Density plot for FITC-A

Figure 2: xyplot and density plots for transformed data.

5 Workflows in flowCore

workFlows implemented in the flowCore handles the gating operations, inter-
mediate results and naming schemes for the variables in a sequential gating
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process and thereby provides a unified software managed interface to access and
summarize the operations performed.

Workflows can be created using the workFlow function. Obects such as gates,
transformations etc can be added to the workflow using the add function. Data
for a particular view in the workflow can be retrieved using the Data function.
The undo function can be used to undo an operation performed on the workflow.

Exercise 4
• Create a workflow for the transformed data tData called myWork using the
workFlow function.

• Create a rectangle gate using the rectangeGate function to include the
parameters FSC-A and SSC-A between the values of 100 and 600

• Add the rectangle gate to the workflow using the add.

• Create a scatter plot of FSC-A and SSC-A for the events included in the
rectangle gate using the xyplot function. The events included in the gate
can be accessed from the workFlow using the Data function and the [[.

> mw <- workFlow(tData, name ="myWork")

> rg <- rectangleGate("FSC-A"=c(100, 600), "SSC-A"=c(100, 600),

+ filterId="rectangle")

> add(mw, rg, parent="base view")

> mw

A flow cytometry workflow called 'myWork'
The following data views are provided:

Basic view 'base view'
on a flowSet
not associated to a particular action item

View 'rectangle+'
on a flowSet linked to
gate action item 'action_rectangle'

View 'rectangle-'
on a flowSet linked to
gate action item 'action_rectangle'

> myplot <- xyplot(`FSC-A` ~ `SSC-A`, Data( mw[["rectangle+"]]))
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Figure 3: Scatter plot for rectangle gated data

6 Detailed analysis of our data set

Our data set consists of 14 flowFrames consisting of patients from two groups
that underwent treatments using two drugs A and B. Each sample has been
stained for CD3,CD4,CD8, CD69 and HLADR. We begin by reading in flow
cytometry data from raw FCS files and storing them in appropriate data struc-
tures. We proceed to identify sub populations of helper and cytotoxic T lym-
phocytes using sequential gating strategies. Our goal is to calculate the propor-
tion of helper and cytotoxic T cells that exhibit the HLADr activation marker
amongst the two groups of patients in our data.

We make use of workFlows implemented in the flowCore package to keep
track of operations performed on our data set, organize the intermediate results
generated as well as handle the naming schemes of intermediate variables that
are created during the analysis.

Our goal in this data analysis process is to separate out the activated T
helper/inducer cells and cytotoxic/suppressor T cells from the rest of the popu-
lation and compare the results amongst the two groups of patients(Drugs A and
B). Figure 4 summarizes our gating strategy for identifying the cells of interest.

The column names of the data are updated with the stain names before it
is added to the workFlow.

> colnames(flowData) <- c("FSC", "SSC","CD8","CD69", "CD4","CD3",

+ "HLADr", "Time")

> wf <- workFlow(flowData, name="biocExample")

The data is first transformed for better visualization of data using the asinh
transformation. We make use of a transformList object to transform the
fluorescence channels stained for CD8, CD69, CD4, CD3 and HLADr channels.
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Figure 4: Sequential gating strategy for our sample data set

The transformList object created can then be added to the workflow using the
add function.

> tf <- transformList(colnames(Data(wf[["base view"]]))[3:7], asinh,

+ transformationId="asinh")

> add(wf, tf)

> wf

A flow cytometry workflow called 'biocExample'
The following data views are provided:

Basic view 'base view'
on a flowSet
not associated to a particular action item

View 'asinh'
on a flowSet linked to
transform action item 'action_asinh'

Before we proceed with the gating operations, we first remove the boundary
events for the FSC and SSC channels. This is done by use of the boundaryFil-
ter function. We proceed to create a boundary filter object and add it to our
workflow
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> boundFilt <- boundaryFilter(filterId="boundFilt", x=c("FSC","SSC"))

> add(wf,boundFilt,parent="asinh")

6.1 T lymphocyte population

The first step in our gating strategy is to identify the lymphocyte subpopu-
lation using the lymphGate function. It selects elliptical cell subpopulations
from two dimensional projections by fitting a bivariate normal distribution to a
preselected rectangular area.

We make make use of the fact that the CD3 reagent binds specifically to the T
lymphocytes for the pre-election process. The lymphGate identifies a rectangular
area containing the lymphocytes by gating areas that are CD3 positive and then
fits a bivariate normal distribution to this selected area using the norm2Filter
function.

After the lymph gate gets added to the workflow, our initial population gets
split into two groups - one containing T lymphocytes(Tcells+) and the other
containing all the other cell groups(Tcells-)

The T cell population selected by the lymph Gate can be observed in Figure
5.

> lg <- lymphGate(Data(wf[["boundFilt+"]]), channels=c("FSC", "SSC"),

+ preselection="CD3", filterId="TCells", eval=FALSE,

+ scale=2.5)

> add(wf, lg$n2gate, parent="boundFilt+")

> myplot <- xyplot(SSC ~ FSC| PatientID, wf[["TCells+"]],

+ par.settings=list(gate=list(col="red",

+ fill="red", alpha=0.3)))
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Figure 5: Lymph gate
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6.2 T helper inducer cells and Cytotoxic suppressor pop-
ulations

The dyes used in flow cytometry are chosen so that they can distinguish between
sub populations when used in combination. For our example, CD4 binds to
helper/inducer T lymphocytes and monocytes. A combination of CD3/CD4
reagents can be used to separate the helper/inducer T cells from the rest of the
T cells and monocytes (if any are included by use of a more liberal lymph gate).

Similarly, CD8 binds to cytotoxic/suppressor cells and NK cells. A combi-
nation of CD3/CD8 can be used to separate the cytotoxic/suppressor T cells
from the remaining T cells and NK cells.

6.2.1 Need for data normalization

The density plots for the CD3, CD4 and CD8 channels are shown below. Our
goal is to identify the cell population groups that are CD3+/CD4+ and CD3+/CD8+.
While this can be achieved by making use of the quadGate function on each
flowFrame, this process can be tedious as the gate dimensions required for each
sample could vary considerably especially in case of CD3 from our example
because the peaks in the density plot are not aligned.

> myplot <-densityplot(PatientID~., Data(wf[["TCells+"]]),

+ channels=c("CD3","CD4","CD8"), groups=GroupID,

+ scales=list(y=list(draw=F)),

+ filter=lapply(c("CD3","CD4","CD8"), curv1Filter),

+ layout=c(3,1))

2 4 6 8

CD3

2 4 6 8

CD4

2 4 6 8

CD8

Figure 6: Data before normalization
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A single quad gate could be used if the data could be normalized so that the
respective peaks align.

6.2.2 Data normalization

The warpSet function could be used to normalize the data based on the identi-
fication of high density areas (termed ”landmarks”) and the subsequent compu-
tation of appropriate transformation functions for each flowFrame so that the
identified landmarks are aligned.

The density plot for the CD3,CD4 and CD8 fluorescence parameters after
normalization can be observed in Figure 7.

> pars <- colnames(Data(wf[["base view"]]))[c(3,4,5,6)]

> norm <- normalization(normFun=function(x, parameters, ...)

+ warpSet(x, parameters,...),

+ parameters=pars,

+ normalizationId="Warping")

> add(wf, norm, parent="TCells+")

Estimating landmarks for channel CD8 ...
Estimating landmarks for channel CD69 ...
Estimating landmarks for channel CD4 ...
Estimating landmarks for channel CD3 ...
Registering curves for parameter CD8 ...
Registering curves for parameter CD69 ...
Registering curves for parameter CD4 ...
Registering curves for parameter CD3 ...

> myplot <- densityplot(PatientID~., Data(wf[["Warping"]]),

+ channels=c("CD3","CD4","CD8"), groups=GroupID,

+ scales=list(y=list(draw=F)),

+ filter=lapply(c("CD3","CD4","CD8"), curv1Filter),

+ layout=c(3,1))

6.2.3 Quadrant gates to identify T helper/inducer cell and cyto-
toxic/suppressor T cell populations

The quadrantGate function can be used to separate two dimensional data into
positive and negative quadrants based on the density estimates of the two pa-
rameters under consideration. Essentially, this creates a single quadrant gate
based on the joint data of all flowFrames.

We apply the quadrantGate function to the normalized data to identify the
CD3+CD4+ sub population.

> qgate <- quadrantGate(Data(wf[["Warping"]]), stains=c("CD3", "CD4"),

+ plot=FALSE, filterId="CD3CD4")

> add(wf, qgate, parent="Warping")
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Figure 7: Data after normalization

> myplot <- xyplot(CD3 ~ CD4 | PatientID, wf[["CD3+CD4+"]] )

Similarly, we apply the quadrantGate function to the CD3 and CD8 channels
to identify the CD3+CD8+ population corresponding to the cytotoxic/suppressor
T cells.

> qgate <- quadrantGate(Data(wf[["Warping"]]), stains=c("CD3", "CD8"),

+ plot=FALSE, filterId="CD3CD8")

> add(wf, qgate, parent="Warping")

> myplot <- xyplot(CD3 ~ CD8 | PatientID, wf[["CD3+CD8+"]])

6.3 T Cell activation marker HLADr

We are interested in the proportion of T cells that exhibit the activation marker
HLADr for the helper and cytotoxic T cells. We make use of the rangeGate to
identify T cells that express the HLADr marker from a one dimensional density
estimate of the data.

> HLADr1 <- rangeGate(Data(wf[["CD3+CD4+"]]), stain="HLADr", plot=FALSE,

+ alpha=0.75, filterId="CD3+CD4+HLAct")

> add(wf, HLADr1, parent="CD3+CD4+")

> myplot <- densityplot(PatientID ~ HLADr, Data(wf[["CD3+CD4+"]]),

+ refline=HLADr1@min)
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Figure 8: CD3+CD4+ quadrant gate

> HLADr2 <- rangeGate(Data(wf[["CD3+CD8+"]]), stain="HLADr", plot=FALSE,

+ alpha=0.75, filterId="CD3+CD8+HLAct")

> add(wf, HLADr2, parent="CD3+CD8+")

> myplot <- densityplot(PatientID ~ HLADr, Data(wf[["CD3+CD8+"]]),

+ refline=HLADr2@min)

The proportion of helper T cells that exhibit the HLADr activation marker
to the total count of events in the original sample is calculated and plotted in
Figure 12.

> pr <-fsApply(Data(wf[["CD3+CD4+HLAct-"]]),nrow)*100 /

+ fsApply(Data(wf[["boundFilt+"]]),nrow)

> res <- data.frame(pr, pData(Data(wf[["CD3+CD4+"]]))[c("GroupID","PatientID")])

> myplot <- barchart(reorder(PatientID, as.numeric(factor(GroupID))) ~ pr,

+ data=res, groups=GroupID,stack=TRUE,

+ auto.key=list(points = FALSE, rectangles = TRUE, space = "right"),

+ main="Activated CD3+CD4+ T cells",

+ xlab="Percentage of activated cells")

Similarly, the proportion of cytotoxic T Cells that express the activation
marker HLADr to the total count of events in the original sample is calculated
and plotted in Figure 13.

> pr <- fsApply(Data(wf[["CD3+CD8+HLAct-"]]),nrow)*100 /

+ fsApply(Data(wf[["boundFilt+"]]),nrow)

> res <- data.frame(pr,pData(Data(wf[["CD3+CD8+"]]))[c("GroupID","PatientID")])

14



CD8

C
D

3

0
4
8

pid149

0 2 4 6 810

pid214 pid225

0 2 4 6 810

pid244

pid291 pid300 pid333

0
4
8

pid349

0
4
8

pid409 pid778 pid847 pid867

0 2 4 6 810

pid877

0
4
8

pid993

Figure 9: CD3+CD8+ quadrant gate

> myplot <- barchart(reorder(PatientID,as.numeric(factor(GroupID))) ~ pr,

+ data=res, groups=GroupID, stack=TRUE,

+ auto.key = list(points = FALSE, rectangles = TRUE, space = "right"),

+ main="Activated CD3+CD8+ T cells",

+ xlab=" Percentage of activated cells")
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Figure 10: HLADr activated CD3+CD4+
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Figure 11: HLADr activated CD3+CD8+
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Figure 12: HLADr activated CD3+CD4+ Summary
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Figure 13: HLADr activated CD3+CD8+ Summary
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7 Session information

• R version 2.11.1 (2010-05-31), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=en_US, LC_NUMERIC=C, LC_TIME=en_US,
LC_COLLATE=en_US, LC_MONETARY=C, LC_MESSAGES=en_US,
LC_PAPER=en_US, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US, LC_IDENTIFICATION=C

• Base packages: base, datasets, graphics, grDevices, methods, splines,
stats, tools, utils

• Other packages: Biobase 2.8.0, cluster 1.13.1, fda 2.2.2, flowCore 1.14.1,
flowStats 1.6.0, flowTrack 0.1.0, flowViz 1.12.0, lattice 0.18-8,
mvoutlier 1.4, mvtnorm 0.9-92, pcaPP 1.8-2, robustbase 0.5-0-1,
rrcov 1.0-01, zoo 1.6-4

• Loaded via a namespace (and not attached): feature 1.2.4, graph 1.26.0,
grid 2.11.1, KernSmooth 2.23-3, ks 1.6.13, latticeExtra 0.6-11,
MASS 7.3-7, RColorBrewer 1.0-2, stats4 2.11.1
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