Brief Intro to R for Flow Packages Users

Chao-Jen Wong

Fred Hutchinson Cancer Research Center

30 July, 2010
Introduction

Atomic Vectors

Matrix

data.frame

Lists

Functions

The \texttt{flowFrame} and \texttt{flowSet} Classes
Outline

Introduction

Atomic Vectors

Matrix
data.frame

Lists

Functions

The flowFrame and flowSet Classes
Packages

Repository
R distributes software via packages.

- **CRAN** – primarily for statistics research and data analysis.
- **Bioconductor** – focus on analysis of high-throughput biological data.

Starting R
Finding packages; installing packages; and attaching packages.

```r
> ## attaching packages
> library(flowCore)
```
Installing Packages

Install Bioconductor packages (and their dependencies)

> source("http://bioconductor.org/biocLite.R")
> biocLite("flowCore")

Install from the flowTrack package

> pkg <- "myDir/flowTrack_1.0.0.tar.gz"
> install.packages(pkg, repos=NULL, type="source")
Getting Help in R

- `help.start` and HTML help button in the Windows GUI
- `help` and `?`: `help('data.frame')`
- `help.search`, `apropos`
- `browseVignettes`
- `RSiteSearch`
- R Mailing lists
Outline

Introduction

Atomic Vectors

Matrix
data.frame

Lists

Functions

The `flowFrame` and `flowSet` Classes
Atomic Vectors

Vector: one-dimensional array of items of the same type.

> # numeric
> L <- c(1.2, 4.3, 2.3, 4)
> W <- c(13.8, 22.4, 18, 18.9)
> # most of functions are vectorized
> length(L)

[1] 4

> area <- L * W
> area

[1] 16.56 96.32 41.40 75.60

Other basic data types:

> s <- "a string" # character
> t <- TRUE # logical
> i <- 1L # integer
> i <- 1+1i # complex
Functions for Creating Vectors

Functions

- `c` - concatenate
- `:` - integer sequences
- `rep` - repetitive patterns

```r
> 1:10
[1]  1  2  3  4  5  6  7  8  9 10
> rep(1:2, 3)
[1] 1 2 1 2 1 2
```

Exercise

1. Read the help page for `seq`
2. Use `seq` to generate a sequence of even integers between one to ten.
Subsetting Vectors

Naming

> ## name the elements of a vector
> v <- c(a=1.1, b=2, c=100, d=50, e=60)
> v

 a b c d e
 1.1 2.0 100.0 50.0 60.0

Subsetting with positive indices

> v[c(1,3,4)]

 a c d
 1.1 100.0 50.0

Subsetting with negative indices

> v[-c(1:3)] # exclude elements

d e
 50 60
Outline

Introduction

Atomic Vectors

Matrix

data.frame

Lists

Functions

The flowFrame and flowSet Classes
Matrix

matrix - two-dimensional vector, all elements share a common type.

```r
> x <- matrix(1:25, ncol=5, dimnames=list(letters[1:5], LETTERS[1:5]))
> x

     A  B  C  D  E
a 1  6 11 16 21
b 2  7 12 17 22
c 3  8 13 18 23
d 4  9 14 19 24
e 5 10 15 20 25

> x[, 2]

 a b c d e
 6 7 8 9 10```

Matrix

Exercise

1. Remove the second row and the fourth column from $x$
2. Subset $x$ to keep the 'D' column.
Outline

Introduction

Atomic Vectors

Matrix
data.frame

Lists

Functions

The flowFrame and flowSet Classes
data.frame

- A special R structure.
- Analogous to a table where each row represents a sample and each column an attribute of a sample.
```r
\begin{verbatim}
\textbf{data.frame}

> df <- data.frame(type=c("case", "case", "control", "control"), time=rexp(4))
> df

 type time
1 case 0.77739394
2 case 1.95270944
3 control 0.91402175
4 control 0.02171282

> df$time
[1] 0.77739394 1.95270944 0.91402175
[4] 0.02171282

> names(df)
[1] "type" "time"
\end{verbatim}
```
Outline

Introduction

Atomic Vectors

Matrix
data.frame

Lists

Functions

The flowFrame and flowSet Classes
Lists

*Recursive* data structure – a list can contain other lists and other types of data structures.

```r
> lst <- list(a=1:4, b=c("X", "Y"),
+ uspaper=list(length=11, width=8.5))
> lst

$a
[1] 1 2 3 4

$b
[1] "X" "Y"

$uspaper
$uspaper$length
[1] 11

$uspaper$width
[1] 8.5
```
Subsetting Lists

- `[ `extracting a single element from a list
  ```
 > lst[[1]]
 [1] 1 2 3 4
  ```
- `[ `extracting a sub-list of the list
  ```
 > lst[1]
 a
 [1] 1 2 3 4
  ```
- `$ `accessing list elements by name.
  ```
 > lst[['b']]
 [1] "X" "Y"
  ```
Functions

```r
> say <- function(name, greeting="hello")
+ {
+ paste(greeting, name)
+ }
> say("world")

[1] "hello world"
```
Outline

Introduction

Atomic Vectors

Matrix
data.frame

Lists

Functions

The `flowFrame` and `flowSet` Classes
The flowFrame and flowSet Classes

- **flowFrame** - a class representing the data contained in a FCS file.
  1. raw measurement
  2. keywords in the FCS files
  3. annotation for parameters (stains, sample names, range)

- **flowSet** - a collection of flowFrame.
The flowFrame and flowSet Classes

```r
> library(flowCore)
> data(GvHD)
> class(GvHD)
[1] "flowSet"
attr(,"package")
[1] "flowCore"
> GvHD
A flowSet with 35 experiments.

An object of class "AnnotatedDataFrame"
rowNames: s5a01, s5a02, ..., s10a07 (35 total)
varLabels and varMetadata description:
 Patient: Patient code
 Visit: Visit number
 ...: ...
 name: NA
 (5 total)
```
flowFrame

Subsetting

> f[, "FSC-H"]

flowFrame object 's5a01'
with 3420 cells and 1 observables:

<table>
<thead>
<tr>
<th>name</th>
<th>desc</th>
<th>range</th>
<th>minRange</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P1</td>
<td>FSC-H</td>
<td>1024</td>
<td>0</td>
</tr>
</tbody>
</table>

maxRange

$P1 1023

119 keywords are stored in the 'description' slot

Extracting raw data

> head(exprs(f))
Some Methods for flowFrame

- exprs
- colnames, featureNames - names
- keyword, identifier - FCS keywords
  
  > keyword(f, "FILENAME")

  $FILENAME
  [1] "s5a01"

- parameters - parameter annotation
- range - dynamic range
- plot, xyplot - visualization (flowViz)
- spillover - spillover matrix
- transform, filter, Subset and etc. - actions
Some Methods for `flowFrame`

`xyplot`

```r
> library(flowViz)
> xyplot(`FSC-H` ~ `SSC-H`, f)
```

- accessing `flowViz::xyplot`.
- formula: `FSC-H` ~ `SSC-H`. Variables FSC-H (Y axis of the plot) and SSC-H (X axis of the plot) are the primary variables; separated `~`.
- data: a `flowFrame`.
Some Methods for flowSet

Working with flowSet

- 
- sampleNames, colnames - names
- phenoData, pData - metadata
- fsApply - apply family, flowSet-specific iterator

Actions items

- compensation, transformation, normalization, filtering and gating
Some Methods for `flowSet`

Examples

```r
> head(pData(phenomData(GvHD)))

<table>
<thead>
<tr>
<th>Patient</th>
<th>Visit</th>
<th>Days</th>
<th>Grade</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>s5a01</td>
<td>5</td>
<td>1</td>
<td>-6</td>
<td>3</td>
</tr>
<tr>
<td>s5a02</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>s5a03</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>s5a04</td>
<td>5</td>
<td>4</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>s5a05</td>
<td>5</td>
<td>5</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>s5a06</td>
<td>5</td>
<td>6</td>
<td>26</td>
<td>3</td>
</tr>
</tbody>
</table>

> ## loop over a flowset to get the range for the first three flowFrames
> fsApply(GvHD[1:3], range)
```
Selected Reference

- *Multivariate Data Visualization with R* by Deepayan Sarker.