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Chromatin Immunoprecipitation

I Cross-link
I Cell lysis and fragmentation

I Sonicate (transcription
factors)

I Micrococcal nuclease
(nucleosomes)

I Enrichment by
immuno-precipitation

I Antibody + magnetic
beads

I DNA purification

I Adaptor-mediated PCR
amplification

Barski and Zhao (2009)



Experimental Setup: ChIP and Seq

densities, shifting the strands relative to each other by increasing

distance. All of the examined data sets exhibit a clear peak in the

strand cross-correlation profile, corresponding to the predominant

size of the protected region (Fig. 1d and Supplementary Fig. 1

online). The magnitude of the peak reflects the fraction of tags in

the data set that appears in accordance with the expected binding tag

pattern. In an ideal case, when all of the sequenced tags participate in

such binding patterns, the correlation magnitude reaches a maximum

value. Conversely, the magnitude decreases as tag positions are

randomized (Supplementary Fig. 2 online).

Using variable-quality tag alignments

Although some tags align perfectly with the reference genome, others

align only partially, with gaps or mismatches. Poorly aligned tags may

result from experimental problems such as sample contamination,

correspond to polymorphic or unassembled regions of the genome,

or reflect sequencing errors. For the Solexa platform, the sequencing

errors are more abundant toward the 3¢ ends of the sequenced

fragments, frequently resulting in partial alignments that include

only the portions of the tags near the 5¢ ends. We estimate that this

increase in mismatch frequencies towards 3¢ termini accounts for

41–75% of all observed mismatches in the examined data sets

(Supplementary Fig. 3 online). As it is not unusual to have

450% of the total tags result in only partial

alignment, inclusion of tags that are par-

tially aligned but still informative is impor-

tant for optimizing use of any data set11,12.

We therefore chose to use the length of the

match and the number of nucleotides cov-

ered by mismatches and gaps to classify the

quality of tag alignment (Table 1 and Sup-

plementary Table 2 online).

Given a classification of tags by quality of

alignment, we propose to use the strand

cross-correlation profile to determine

whether a particular class of tags should be

included in further analysis. A set of tags informative about the

binding positions should increase cross-correlation magnitude,

whereas a randomly mapped set of tags should decrease it (Supple-

mentary Fig. 2). Using this approach for the NRSF data set (Fig. 2),

we found that alignments with matches spanning at least 18 bp and

zero mismatches improved the cross-correlation profile. However,

only full-length (25 bp) matches should be considered for tags with

two mismatches. Using this criterion to accept tags increased their

number over the set of perfectly aligned tags by 27% for the NRSF

data set, 30% for the CTCF data set and 36% for the STAT1 data set

(Supplementary Fig. 4 online). The incorporation of these tags

improved sensitivity and accuracy of the identified binding positions

(Supplementary Fig. 5 online).

Controlling for background tag distribution

The statistical significance of the tag clustering observed for a putative

protein binding position depends on the expected background pat-

tern. The simplest model assumes that the background tag density is

distributed uniformly along the genome and independently between

the strands11. In addition to the NRSF ChIP sample, Johnson et al.2

have sequenced a control input sample, providing an experimental

assessment of the background tag distribution. We found that the

background tag distribution exhibits a degree of clustering that is
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Figure 1 Protein-binding detection from ChIP-seq data. (a) Main steps of the proposed ChIP-seq processing pipeline. (b) Schematic illustration of ChIP-seq

measurements. DNA is fragmented or digested, and fragments cross-linked to the protein of interest are selected with immunoprecipitation. The 5¢ ends

(squares) of the selected fragments are sequenced, typically forming groups of positive- and negative-strand tags on the two sides of the protected region.

The dashed red line illustrates a fragment generated from a long cross-link that may account for the tag patterns observed in CTCF and STAT1 data sets.

(c) Tag distribution around a stable NRSF binding position. Vertical lines show the number of tags (right axis) whose 5¢ position maps to a given location on

positive (red) or negative (blue) strands. Positive and negative values on the y-axis are used to illustrate tags mapping to positive and negative strands,

respectively. The solid curves show tag density for each strand (left axis, based on Gaussian kernel with s ¼ 15 bp). (d) Strand cross-correlation for the

NRSF data. The y-axis shows Pearson linear correlation coefficient between genome-wide profiles of tag density of positive and negative strands, shifted

relative to each other by a distance specified on the x-axis. The peak position (red vertical line) indicates a typical distance separating positive- and

negative-strand peaks associated with the stable binding positions.

Table 1 Classification of tag alignments based on the length of the match and the number

of mismatches

16 17 18 19 20 21 22 23 24 25

0 63,388 50,613 34,707 21,230 16,775 14,453 11,068 6,556 54,455 1,234,829

1 16,625 25,991 24,715 23,431 17,540 12,705 31,416 192,975

2 295 3436 7,939 6,042 6,379 16,495

The table gives the number of NRSF data set tags whose best alignment falls within each class, as defined by the

length of alignment (columns) and the number of mismatches (rows). The tags from the NRSF data set were aligned

using BLAT. The number of mismatches includes the number of nucleotides covered by gaps.
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Biological Questions: Nucleosomes

Example: Human CD4+T cells

I Phasing tightly correlated
with Pol II binding

I Differential positioning of
first nucleosome

Schones et al. (2008)



Biological Questions: Transcription Enhancers

Example: tissue-specific
enhancers in mouse embryonic
forebrain

I ChIP of enhancer associated
protein p300 identifies
1000’s of binding sites

I In vivo effects reproducible
in transgenic mice

I Enriched binding near
expressed genes

Visel et al. (2009)



Experimental Designs

I Single sample
I Control lane (Park, 2009)

I ‘Input’ control (DNA prior
to IP)

I Mock IP (no antibodies)
I Non-specific IP

I Designed experiment –
factor(s) with 2 or more
levels.

“ChIP experiment depends on
many intractable parameters,
likely including. . . phase of the
moon” (Barski and Zhao, 2009)



Depth of Coverage

Heuristic, modified from Barski and Zhao (2009)

S ∝ G

W
× N

E

S Amount of sequencing

G Non-repetitive genome size

W Window size (resolution)

N Fraction of genome after ‘ChIP’

E Enrichment factor (antibody immunoprecipitation)

I E implies that the input lane is well-characterized, and this
implies extensive sequencing of the input, where N is large



Depth of Coverage

Kharchenko et al. (2008)

I No saturation at specified
FDR: more peaks
continually found, because
larger read counts increase
statistical power

I Imposing a fixed fold
enrichment criterion
established

I Multiplexing increasingly
attractive, especially for
small genomes / well defined
ChIP targets



Sequencing

Longer reads

I Better mapping in repetitive regions

Paired end reads

I Easier transcription factor binding site identification?

I Better mapping (on the borders of) repetitive regions?
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Pre-Processing: Alignment & Quality Assessment

Library construction

I Under-representation of AT-rich regions with low melting
temperature, GC-rich regions due to PCR bias

I MNase sequence preference (nucleosomes)

I Antibody variability

I Optical and PCR duplicate reads

Alignment

I Micro-repetitive genomic regions (non-alignment)

I Non-specific enrichment, often reads on a single strand

Barski and Zhao (2009), Park (2009)



Analysis

Simple

I View aligned reads in a browser (or HilbertVisGUI !)

Binned

I Divide genome into bins

I Identify bins with greater-than-expected (e.g., Poisson) counts

Model-based

I Exploit +/− strand asymmetry to more narrowly define
binding sites

Pepke et al. (2009) and Schmidt et al. (2009) offer comprehensive
enumerations of available software

http://bioconductor.org/packages/release/bioc/html/HilbertVisGUI.html


Peak Identification

Strand asymmetry

I 5’ end of fragments

I Distinct distributions on +,
− strands

Smoothed profile

I Shift each distribution
toward center, or. . .

I Extend each read by
estimated fragment length

I Other algorithms:
Kharchenko et al. (2008)

Park (2009)



Peak Quantification

Fold ratio

I Enrichment relative to control

I But: 5-fold change from 10 to 50 has different statistical
significance from 100 to 500

Model-based

I Poisson (or other) description of count data, e.g., MACS,
Zhang et al. (2008)

I Adjust for regional bias in tag density from library
construction / micro-repetitive regions, e.g., PeakSeq,
Rozowsky et al. (2009)



An Example: MACS, Zhang et al. (2008)

Pre-processing

I Remove duplicate tags if more than expected based on
sequence depth

I Scale control lane to same total tag count as experiment

Peak identification

I Use ‘high-quality’ peaks to estimate fragment width d

I Shift all peaks d/2 toward 3’ end

Peak quantification

I Whole genome Poisson expectation λBG , local processes
based on control λ1k , λ5k , λ10k ;

I Local Poisson process λlocal = max(λBG , λ1k , λ5k , λ10k)

I Score is Poisson probability based on λlocal



Peak Problems

Three types of peak

I Sharp: protein-DNA binding; histone modification of
regulatory elements

I Broad: histone modifications marking domains

I Mixed

Algorithms generally satisfactory for sharp peaks; adopt ad hoc
approaches for broad / mixed peaks



Additional Considerations

Assessing algorithm performance

I Validate using quantitative PCR

I Distribution of distances from peaks to nearest known motif

Statistical significance

I Adjusted to reflect multiple comparisons

I Usually reported as false discovery rate

I Requires realistic null model, e.g., capturing local variations in
input control



Designed Experiments

Much like microarray data

I Rectangular data; ‘features’ × ‘samples’

I Easier to compare across samples than features (?)

Important application-specific issues

I Counts: distinct properties require appropriate error model

I Measurement ‘features’ discovered rather than determined a
priori
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Annotation and Integration

Annotation

I Relate peak locations to known genomic features, e.g.,
transcription start sites

I Gene set enrichment-style analyses

I Motif discovery from high-scoring peaks

Integration

I Expression levels of genes

I SNPs and allele-specific binding
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Resources

Bioconductor packages

I BayesPeak, CSAR, chipseq

I ChIPpeakAnno

I MotIV , rGADEM

I ChIPsim

http://bioconductor.org/packages/release/bioc/html/BayesPeak.html
http://bioconductor.org/packages/release/bioc/html/CSAR.html
http://bioconductor.org/packages/release/bioc/html/chipseq.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/MotIV.html
http://bioconductor.org/packages/release/bioc/html/rGADEM.html
http://bioconductor.org/packages/release/bioc/html/ChIPsim.html
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