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Chromatin Immunoprecipitation
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Experimental Setup: ChIP and Seq
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Biological Questions: Nucleosomes
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Biological Questions: Transcription Enhancers
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Experimental Designs

» Single sample
» Control lane (Park, 2009)
» ‘Input’ control (DNA prior
to IP)
» Mock IP (no antibodies)
» Non-specific IP
» Designed experiment —
factor(s) with 2 or more
levels.

“ChIP experiment depends on
many intractable parameters,
likely including. .. phase of the
moon” (Barski and Zhao, 2009)



Depth of Coverage

Heuristic, modified from Barski and Zhao (2009)
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S Amount of sequencing

G Non-repetitive genome size

W Window size (resolution)

N Fraction of genome after ‘ChIP’

E Enrichment factor (antibody immunoprecipitation)

» E implies that the input lane is well-characterized, and this
implies extensive sequencing of the input, where N is large



Depth of Coverage
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Sequencing

Longer reads
» Better mapping in repetitive regions
Paired end reads
» Easier transcription factor binding site identification?

» Better mapping (on the borders of) repetitive regions?
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Pre-Processing: Alignment & Quality Assessment

Library construction

» Under-representation of AT-rich regions with low melting
temperature, GC-rich regions due to PCR bias

» MNase sequence preference (nucleosomes)

» Antibody variability

» Optical and PCR duplicate reads
Alignment

» Micro-repetitive genomic regions (non-alignment)

» Non-specific enrichment, often reads on a single strand
Barski and Zhao (2009), Park (2009)



Analysis

Simple

» View aligned reads in a browser (or HilbertVisGUI!)
Binned

» Divide genome into bins

» Identify bins with greater-than-expected (e.g., Poisson) counts
Model-based

» Exploit +/— strand asymmetry to more narrowly define

binding sites

Pepke et al. (2009) and Schmidt et al. (2009) offer comprehensive
enumerations of available software


http://bioconductor.org/packages/release/bioc/html/HilbertVisGUI.html

Peak ldentification

Strand asymmetry
» 5’ end of fragments

» Distinct distributions on +,
— strands

Smoothed profile

» Shift each distribution
toward center, or. ..

» Extend each read by
estimated fragment length

» Other algorithms:
Kharchenko et al. (2008)

Postive strand

Park (2009)




Peak Quantification

Fold ratio
» Enrichment relative to control
» But: 5-fold change from 10 to 50 has different statistical
significance from 100 to 500
Model-based
» Poisson (or other) description of count data, e.g., MACS,
Zhang et al. (2008)

» Adjust for regional bias in tag density from library
construction / micro-repetitive regions, e.g., PeakSeq,
Rozowsky et al. (2009)



An Example: MACS, Zhang et al. (2008)

Pre-processing

» Remove duplicate tags if more than expected based on
sequence depth

» Scale control lane to same total tag count as experiment

Peak identification

» Use ‘high-quality’ peaks to estimate fragment width d
» Shift all peaks d/2 toward 3’ end
Peak quantification

» Whole genome Poisson expectation Agg, local processes
based on control A1k, Ask, A1ok;

» Local Poisson process Ajpcal = max(Agg, Aiks Ask, A10k)
» Score is Poisson probability based on Ajocal



Peak Problems

Three types of peak

» Sharp: protein-DNA binding; histone modification of
regulatory elements

» Broad: histone modifications marking domains
» Mixed

Algorithms generally satisfactory for sharp peaks; adopt ad hoc
approaches for broad / mixed peaks



Additional Considerations

Assessing algorithm performance
» Validate using quantitative PCR

» Distribution of distances from peaks to nearest known motif
Statistical significance

» Adjusted to reflect multiple comparisons
» Usually reported as false discovery rate

» Requires realistic null model, e.g., capturing local variations in
input control



Designed Experiments

Much like microarray data

» Rectangular data; ‘features’ x ‘samples’

» Easier to compare across samples than features (?7)
Important application-specific issues

» Counts: distinct properties require appropriate error model

» Measurement ‘features’ discovered rather than determined a
priori
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Annotation and Integration

Annotation

» Relate peak locations to known genomic features, e.g.,
transcription start sites

» Gene set enrichment-style analyses

» Motif discovery from high-scoring peaks
Integration

» Expression levels of genes

» SNPs and allele-specific binding
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Resources

Bioconductor packages
» BayesPeak, CSAR, chipseq
» ChlPpeakAnno
» MotlV, rGADEM
» ChlPsim


http://bioconductor.org/packages/release/bioc/html/BayesPeak.html
http://bioconductor.org/packages/release/bioc/html/CSAR.html
http://bioconductor.org/packages/release/bioc/html/chipseq.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/MotIV.html
http://bioconductor.org/packages/release/bioc/html/rGADEM.html
http://bioconductor.org/packages/release/bioc/html/ChIPsim.html
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