Sub-cellular localisation of proteins with pRoloc

Laurent Gatto
lg390@cam.ac.uk

Cambridge Centre For Proteomics
University of Cambridge

European Bioinformatics Institute (EBI)

18th November 2010
Plan

1. **Sub-cellular localisation**
 - Why

2. **Organelle proteomics**
 - How

3. **pRoloc**
 - The 3 concepts of pRoloc
 - Examples
 - Comparison

4. **Future work**
Plan

1. **Sub-cellular localisation**
 - Why

2. **Organelle proteomics**
 - How

3. **pRoloc**
 - The 3 concepts of pRoloc
 - Examples
 - Comparision

4. **Future work**
Localisation is function

- Meet interaction partners and functional conditions.
- Knowing where a protein resides helps to study its function.
- Assigning proteins with known function to organelles helps to refine our understanding of these organelles.
Organelle proteomics

There are many ways to perform organelle proteomics. And even for similar experiments, data analysis methodologies vary.

Motivation and goals of pRoloc

Developing a organelle proteomics framework to compare analysis methodologies. Develop new/better analyses pipelines.
L. Gatto Bioconductor Developer Meeting 2010

Plan

1. Sub-cellular localisation
 - Why

2. Organelle proteomics
 - How

3. pRoloc
 - The 3 concepts of pRoloc
 - Examples
 - Comparision

4. Future work
The many ways of...

<table>
<thead>
<tr>
<th>Single cell direct observation</th>
<th>Population level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subcellular fractionation (number of fractions)</td>
</tr>
<tr>
<td></td>
<td>1 fraction</td>
</tr>
<tr>
<td></td>
<td>Pure fraction catalogue</td>
</tr>
<tr>
<td>Cataloguing</td>
<td>Relative abundance</td>
</tr>
<tr>
<td>Tagging</td>
<td>Quantitative mass spectrometry</td>
</tr>
</tbody>
</table>

- GFP
- Epitope
- Prot.-spec. antibody
- Pure fraction catalogue
- Subtractive proteomics (enrichment)
- Invariant rich fraction (clustering)
- PCP (χ^2)
- LOPIT (PCA, PLS-DA)

from Gatto et al. 2010 PMID: 21046620
Sub-cellular localisation
Organelle proteomics
pRoloc
Future work

Cell lysate

Pure fraction catalogue

Invariant rich fraction (clustering)

Subtractive proteomics (enrichment)

from Gatto et al. 2010 PMID: 21046620

L. Gatto Bioconductor Developer Meeting 2010
Plan

1. Sub-cellular localisation
 - Why

2. Organelle proteomics
 - How

3. pRoloc
 - The 3 concepts of pRoloc
 - Examples
 - Comparision

4. Future work
Assign and see

- **Assign sub-cellular localisation**
 predict() – PSL-DA and χ^2...

- **Visualisation the results**
 visualise() – currently PCA and PDP.

- **Handle missing data**
 impute() – to do.
The test data

From Dunkley et al., 'Mapping the Arabidopsis organelle proteome', PNAS 103(17), 2006 (PMID: 16618929). Good data set!

> library(pRoloc)
Scalable Robust Estimators with High Breakdown Point (version 1.1-00)
> data(dunkley2006)
> dunkley2006
MSnSet (storageMode: lockedEnvironment)
assayData: 689 features, 16 samples
 element names: exprs
protocolData: none
phenoData
 sampleNames: M1F1A M1F4A ... M2F11B (16 total)
 varLabels: membrane.prep fraction replicate
 varMetadata: labelDescription
featureData
 featureNames: At2g01470 At5g42020 ... At5g39510 (689 total)
 fvarLabels: train test ... New (5 total)
 fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
 pubMedIds: 16618929
Annotation:
 --- Processing information ---
Loaded on Tue Nov 9 09:43:54 2010.
Normalised to sum of intensities.
 MSnbase version: 0.0.2
 Xcms version: 1.25.1
> pData(dunkley2006)

<table>
<thead>
<tr>
<th>membrane.prep</th>
<th>fraction</th>
<th>replicate</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1F1A</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>M1F4A</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>M1F7A</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>M1F11A</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>M1F2B</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>M1F5B</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>M1F8B</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>M1F11B</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>M2F1A</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>M2F4A</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>M2F7A</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>M2F11A</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>M2F2B</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>M2F5B</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>M2F8B</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>M2F11B</td>
<td>2</td>
<td>B</td>
</tr>
</tbody>
</table>

> head(fData(dunkley2006))

<table>
<thead>
<tr>
<th>train</th>
<th>test</th>
<th>Evidence</th>
<th>Method</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>At2g01470</td>
<td>ER</td>
<td>ER</td>
<td>known</td>
<td>PLSDA known</td>
</tr>
<tr>
<td>At5g42020</td>
<td>ER</td>
<td>ER</td>
<td>known</td>
<td>PLSDA known</td>
</tr>
<tr>
<td>At4g37640</td>
<td>ER</td>
<td>ER</td>
<td>known</td>
<td>PLSDA known</td>
</tr>
<tr>
<td>At5g61790</td>
<td>ER</td>
<td>ER</td>
<td>known</td>
<td>PLSDA known</td>
</tr>
<tr>
<td>At5g17770</td>
<td>ER</td>
<td>ER</td>
<td>known</td>
<td>PLSDA known</td>
</tr>
<tr>
<td>At4g01320</td>
<td>ER</td>
<td>ER</td>
<td>known</td>
<td>PLSDA known</td>
</tr>
</tbody>
</table>
Chi² – Protein distribution

\[\chi^2 = \sum_i (x_i - x_p)^2 / x_p \]

- \(x_i \): normalised value of feature in fraction \(i \)
- \(x_p \): normalised value of marker in fraction \(i \)

Adapted from Andersen et al., 'Proteomic characterization of the human centrosome by protein correlation profiling', Nature. 2003 Dec 4;426(6966):570-4. (PMID: 14654843)

```r
> mrk <- fData(dunkley2006)$train == "ER"
> crl <- fData(dunkley2006)$train == "unknown"
> pchi2 <- predict(dunkley2006, method = "chi2", markers = mrk,
+                   correlaters = crl, t = 0.1, organelle = "ER")
> pchi2

Object of prediction class Chi2
for organelle: ER
49 markers
547 correlaters
100 predicted with threshold 0.1
> .fractions <- order(pData(dunkley2006)$fraction)
> .num <- sort(pData(dunkley2006)$fraction)
> viz <- visualise(dunkley2006, method = "pdp", fractionsOrder =
+   fractionsNum = .num, markers = list(ER = mrk), correlaters =
+   prediction(pchi2))
> viz

Object of visualisation class PDP
16 fractions - 689 features
1 marker(s)
> plot(viz, colour = "red")

![Graph showing ER fractions and intensity comparison](image)
PLS-DA – PCA visualisation

Dunkley et al. 2006

> ppls <- predict(dunkley2006, method = "plsda", annot = 1, training = fData(dunkley2006)$train != "unknown", classProb = 0.95)
> ppls

Object of prediction class PLSDA
Call: plsd.msnset(x = object, annot = 1, training = ..2, classProb = 0.95)
Data centered and scaled before modelling.
442 new prediction using minimum class probability of 0.95

> table(annotation(ppls))

<table>
<thead>
<tr>
<th></th>
<th>ER</th>
<th>Golgi mit/plastid</th>
<th>PM</th>
<th>unknown</th>
<th>vacuole</th>
</tr>
</thead>
<tbody>
<tr>
<td>values</td>
<td>195</td>
<td>103</td>
<td>144</td>
<td>116</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

> fData(dunkley2006)$plsda <- annotation(ppls)
> viz <- visualise(dunkley2006)
> viz

Object of visualisation class PCA
Call:
PcaCov(x = object, scale = TRUE, center = TRUE)
Importance of components:

<table>
<thead>
<tr>
<th></th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
<th>PC4</th>
<th>PC5</th>
<th>PC6</th>
<th>PC7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation</td>
<td>1.251</td>
<td>0.35446</td>
<td>0.19589</td>
<td>0.15266</td>
<td>0.12798</td>
<td>0.10758</td>
<td>0.09566</td>
</tr>
<tr>
<td>Proportion of Variance</td>
<td>0.862</td>
<td>0.06925</td>
<td>0.02115</td>
<td>0.01284</td>
<td>0.00903</td>
<td>0.00638</td>
<td>0.00504</td>
</tr>
<tr>
<td>Cumulative Proportion</td>
<td>0.862</td>
<td>0.93133</td>
<td>0.95248</td>
<td>0.96532</td>
<td>0.97435</td>
<td>0.98073</td>
<td>0.98577</td>
</tr>
</tbody>
</table>

An object of class "AnnotatedDataFrame"

featureNames: At2g01470 At5g42020 ... At5g39510 (689 total)
varLabels: train test ... plsda (6 total)
varMetadata: labelDescription
print(plot(viz, k = 3, annotation = "plsda"))
> plot(viz, k = c(1, 2), annotation = "plsda", col = c("red", "green",
+ "steelblue", "orange", "grey", "purple"), alpha = 0.7)

Colours
- red: ER
- green: Golgi
- blue: mit/plastid
- orange: PM
- grey: unknown
- purple: vacuole
Chi2 vs. PLS-DA

Colours
- ER
- Golgi
- mit/plastid
- PM
- unknown
- vacuole

L. Gatto
Bioconductor Developer Meeting 2010
Plan

1. Sub-cellular localisation
   - Why

2. Organelle proteomics
   - How

3. pRoloc
   - The 3 concepts of pRoloc
   - Examples
   - Comparision

4. Future work
@todo – more cutting edge

• Cross validation.
• Work on better and **interactive** visualisation.
• How to most efficiently combine different experiments (Trotter *et al.*, 2010 PMID: 21058340).
• How to most efficiently combine/analyse technical/biological replicates?
• Analysis/development/statistical framework for more elaborated analysis designs – dynamic (time) and differential (different conditions) aspects of organelle proteomics.

http://github.com/lgatto/pRoloc
Acknowledgement

- CCP team, especially Mike Deery, Arnoud Groen and of course Kathryn Lilley.
- Juan Antonio Vizcaíno, Henning Hermjakob from EBI
- Wolfgang Huber from EMBL

Funding

☀️ BBSRC Tools and Resources Development Fund Award.
Thank you for your attention.