Sequence Analysis: An Introduction

Valerie Obenchain (vobencha@fhcrc.org) and Martin Morgan (mtmorgan@fhcrc.org)

Fred Hutchinson Cancer Research Center

9-10 December, 2010
Work flow
- Experiment
- Technology
- Pre-processing
- Analysis
- Annotation and Integration

Data I/O : Short Reads
- ShortRead
 - Input and exploration
 - Manipulation
- Rsamtools and GenomicRanges

Other Data Examples

Resources
Experiments

- ChIP-seq
- Differential expression
- RNA-seq (alternate splicing)
- Metagenomic
- ...

...
Technology

Platforms

- Illumina / Genome Analyzer
- Roche / 454
- Applied Biosystems / SOLiD
- Complete Genomics
Pre-processing

Vendor and third-party
▶ Image processing, base calling
▶ Machine quality assessment
▶ Alignment

Bioconductor
▶ Quality assessment and representation: *ShortRead*, *GenomicRanges*
▶ Read remediation, trimming, primer removal, specialized manipulation: *IRanges, ShortRead, Biostrings*
▶ Specialized alignment tasks: *Biostrings, BSgenome*
Bioconductor Sequence Analysis Packages

ChIP-seq
 ▶ BayesPeak, chipseq, ChIPseqR, ChIPsim, PICS
RNA-seq and snRNA discovery
 ▶ Genominator, rnaSeqMap, segmentSeq
Metagenomics
 ▶ OTUbase
Methyl-seq
 ▶ MEDIPS, methVisual
Related: genotyping
 ▶ GGtools, VanillaICE (variant calls from SNP arrays)
Annotation and Integration

Annotation

► Genome coordinate / gene (and other) relationships, GenomicFeatures, ChIPpeakAnno
► Resources originally developed for microarray analysis – AnnotationDbi, org.*.db, KEGG.db, GO.db, Category, GOstats

Integration

► Digital and microarray differential expression
► RNAseq and gene ontology / pathway, goseq
► HapMap, 1000 genomes, UCSC, Sequence Read Archive, GEO, ArrayExpress, rtracklayer, biomaRt, Rsamtools, GEOquery, SRAdb
Bioconductor Sequence Packages

- Rsamtools
- ShortRead
- GenomicRanges
- IRanges
- Biostrings
- BSgenome
- rtracklayer
- GenomicFeatures
- IRanges
- Biostrings
- GenomicRanges
- BSgenome
- rtracklayer
- ShortRead
- Rsamtools
ShortRead data input

```r
> library(SeattleIntro2010)
> library(ShortRead)
> fl <- system.file("extdata", "SRR002051.chrI-V.bam",
+     package="SeattleIntro2010")
> aln <- readAligned(fl, type = "BAM")
```
The *AlignedRead* class

```r
> aln

class: AlignedRead
length: 446075 reads; width: 33 cycles
chromosome: chrI chrI ... chrV chrV
position: 11 1062 ... 576545 576836
strand: - + ... - -
alignQuality: NumericQuality
alignData varLabels: flag

> table(strand(aln), useNA="always")

+ - * <NA>
215256 230819 0 0
```
Accessing reads, base quality, and other data

> head(sread(aln), 3)

A DNAStringSet instance of length 3

<table>
<thead>
<tr>
<th>width</th>
<th>seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>TGTGGTGTGTGGTGGTGGG...GTGGGTGTGTGGGG</td>
</tr>
<tr>
<td>33</td>
<td>TGCATCTTTAATCT...TTACACTACTCAT</td>
</tr>
<tr>
<td>33</td>
<td>TTAAATAACGTACC...AGTATCGTCTTTGA</td>
</tr>
</tbody>
</table>
Alphabet by cycle

Expectation: nucleotide use independent of cycle

```r
> alnp <- aln[strand(aln) == "+"]
> abc <- alphabetByCycle(sread(alnp))
> class(abc)
[1] "matrix"
> abc[1:6,1:4]

   A     85632  79174  79363  82020
   C     37815  34182  29250  30064
   G     24054  30002  40356  34334
   T     67755  71896  66287  68838
   M       0      0      0      0
   R       0      0      0      0
```
Alphabet by cycle

`matplot` takes a matrix and plots each column as a set of points

```r
> tabc <- t(abc[1:4,])
> matplot(tabc, type="l",
+ lty=rep(1, 4))
```
Encoded quality scores can be decoded to their numerical values and represented as a matrix. Calculating the average of the column means creates a vector of average quality scores across cycle.

```r
> m <- as(quality(alnp), "matrix")
> plot(colMeans(m), type="b")
```
Recoding and updating

1. Access the chromosome information
2. Extract the chromosome number from the factor level
3. Recode the chromosome number to roman (!), create new levels, and update the chromosome
4. Update the AlignedRead

```r
> chrom <- chromosome(alnp)
> i <- sub("S288C_([[:digit:]]+)", "\\1", levels(chrom))
> levels(chrom) <- paste("chr", as.roman(i), sep="")
> alnp <- renew(alnp, chromosome=chrom)
```
Enhancements to *AlignedRead* and *ShortRead*

- Easy to input arbitrary subset of reads
- Not necessary to read sequence, quality, identifier and other information when not necessary
- Reads can be aligned with indels and gaps
samtools and **Rsamtools**

samtools
- Data format – text (SAM) and binary (BAM)
- Tools to manipulate (e.g., merge), analyze (e.g., pileup) and view
- For developers – bindings to other languages, e.g., Picard

Rsamtools
- Input and represent BAM files.
- High-level: `readAligned(..., type="BAM")`; `readGappedAlignments`; `readPileup`
- Flexible: `scanBam`
Input

ScanBamParam

- **which**: `GRanges` selecting reference, genome coordinates, strand.
- **flag**: select paired / mapped / mate mapped reads
- **what**: fields to retrieve, e.g., query name, reference name, strand, position, width, cigar
The `GappedAlignments` class in `GenomicRanges`:

- `readGappedAlignments` uses `scanBam`
- Genomic coordinates, ‘cigar’, covered intervals
- Cigar: run length encoding; M (match), I, D (insertion, deletion), N (skipped), S, H (soft, hard clip), P (padding). E.g., 35M, 18M2I15M
- Accessors, subsetting, narrowing, `pintersect`, `coverage`, ...
Example

```r
> ## reads on chr III overlapping 100000-110000
> which <- GRanges("chrIII", IRanges(100000, 110000))
> param <- ScanBamParam(which=which)
> bf <- scanBam("path/to/bamfile", param=param)
```

scanBam returns a nested list

- One element for each row of GRanges
- Nested elements correspond to what
454 Microbiome Pre-Processing

```r
> library(ShortRead)
> dir <- "/not/public"
> bar <- read454(dir) # Input
> code <- narrow(sread(bar), 1, 8) # Extract bar code
> aBar <- bar[code == "AAGCGCTT"] # Subset one bar code
> noBar <- # Remove bar code
+    narrow(aBar, 11, width(aBar))
> pcrPrimer <- "GGACTACCVGGGTATCTAAT"
> trimmed <- # Remove primer
+    trimLRPatterns(pcrPrimer, noBar, Lfixed=FALSE)
> writeFastq(trimmed, # Output
+ file.path(dir, "trimmed.fastq"))
```
Digital Gene Expression

```r
> library(GenomicFeatures)
> bamFile <- "/path/to/file.bam"
> aligns <- readGappedAlignments(bamFile)
> ## ... txdb: transcripts from UCSC 'knownGenes'
> exonRanges <- exonsBy(txdb, "tx")
> ## ... housekeeping
> counts <- countOverlaps(exonRanges, aligns)
> ## ... normalization --> 'highScores' variable
> txs <- transcripts(txdb,
+    vals=list(tx_id=names(highScores)),
+    columns=c("tx_id","gene_id"))
> systematicNames <- elementMetadata(txs)[["gene_id"]]
```
Resources

Bioconductor Web site

- http://bioconductor.org

Help in R

- `help.start()` to view a help browser.
- `help(package = "Biostrings")`
- `?readAligned`
- `browseVignettes("GenomicRanges")`