Getting Started with Lattice

27 January, 2010

Contents

1 Introduction 1
2 Basic ideas 2
3 Scatter plot (xyplot) 2
4 Box and whisker plots (bwplot) 4
5 Further Reading 5
6 Session information 5

List of Figures

1 Example lattice plots. By following the exercises in this lab, you should be able to reproduce these graphics. 6

1 Introduction

The lattice package implements the Trellis graphics system and provides high-level functions for visualization of multivariate data. This lab covers some of the basics of the lattice package.

Although the lattice package is included in R, you must explicitly load the package to make use of the functions it provides:

> library("lattice")

Lattice provides several plotting functions, some of the commonly used ones are listed below.
<table>
<thead>
<tr>
<th>Lattice functions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xyplot()</td>
<td>Scatter plot</td>
</tr>
<tr>
<td>dotplot()</td>
<td>Cleveland dot plot</td>
</tr>
<tr>
<td>bwplot()</td>
<td>Box and whisker plot</td>
</tr>
<tr>
<td>histogram()</td>
<td>Histogram</td>
</tr>
<tr>
<td>densityplot()</td>
<td>Kernel density plot</td>
</tr>
<tr>
<td>qq()</td>
<td>Two sample quantile plot</td>
</tr>
</tbody>
</table>

Table 1: Commonly used high-level lattice functions

2 Basic ideas

A typical call to the lattice function `xyplot` is shown below.

```
> xyplot(y ~ x, data, groups = g)
```

The arguments to a lattice function can be summarized in terms of

1. lattice function: A lattice plotting function such as `xyplot`, `dotplot` etc.
2. formula: The first argument to a lattice method is a formula. The formula for our example is `y ~ x | c`. If the lattice method takes only a single vector as input, the formula can be expressed as `~ x | c`.
 - primary variables: Variables `y` (Y axis of the plot) and `x` (X axis of the plot) that define the lattice display separated by the `~` character.
 - conditioning variable: Variable `c` in the example separated from the primary variables by the character `|`. The conditioning variable divides the plot into separate panels.
3. grouping variable: The variable `g` in the example. The grouping variable segregates data into subgroups within each panel.
4. data: A `data.frame` with column names corresponding to the variables `y`, `x`, `c` and `g`.

Lattice functions do not, in fact, generate a visual display. They return an object of class `trellis` which will generate the desired display when printed using the `print` function.

3 Scatter plot (xyplot)

We will use the Indometh data that contains plasma concentrations of the drug indomethacin for six subjects over a period of eight hours to illustrate a few aspects of `lattice`. First, we will use `xyplot` to produce a scatterplot of concentration of the drug over time. (Figure 1(a))
Exercise 1
Reproduce the concentration vs time plot from Figure 1(a) by following the steps described below.

1. Create a scatter plot using `xyplot`. Use the formula `conc ~ time` with `df` as the data argument.

2. Change the X–axis label to “Time (hours)” by adding an `xlab` argument to the `xyplot` call.

3. Similarly, change the Y–axis label to “Concentration (mcg/ml)” using `ylab`.

4. Finally, change the title of the plot by adding a `main` argument.

```r
> myplot <- xyplot(conc ~ time, data = df,
+                  xlab = "Time (hours)",
+                  ylab = "Concentration (mcg/ml)",
+                  main = "Pharmacokinetics of Indomethicin")
```

A scatter plot with the concentration profile for each patient appearing in a separate panel can be seen in Figure 1(b). This plot was produced by making use of Subject as the conditioning variable.

Exercise 2
1. Create a scatter plot by adding the conditioning variable Subject to the formula from Exercise 1.

2. Modify the conditioning variable in the formula to `factor(Subject, levels = 1:6)` and observe the difference in the order of plots.

```r
> myplot <- xyplot(conc ~ time | factor(Subject, levels = 1:6),
+                  data = df, main = "Pharmacokinetics of Indomethicin",
+                  ylab = "Concentration (mcg/ml)",
+                  xlab = "Time (hours)")
```
A scatter plot produced by superimposing the concentration profiles from all the subjects to a single panel can be seen in Figure 1(c). The figure makes use of lines instead of points and also has a legend to help distinguish the concentration profiles of different subjects.

Exercise 3

1. Create a single scatter plot of the superimposed concentrations by making use of formula `conc ~ time` and the additional argument `groups = Subject` to the `xyplot` function.

2. Add an additional argument `type='l'` to the function and observe what effect it has on the plot.

3. Add an additional argument `auto.key = list(space = "right")` to the `xyplot` to add a legend to the right of the plot.

```
> myplot <- xyplot(conc ~ time, data = df, groups = Subject, type='l',
+                  auto.key = list(space = "right"),
+                  main = "Pharmacokinetics of Indomethicin",
+                  ylab = "Concentration (mcg/ml)",
+                  xlab = "Time (hours)"
```

4 Box and whisker plots (bwplot)

We are interested in finding out differences in the plasma concentration of Indomethicin amongst the six subjects. A box and whisker plot of the concentration of Indomethicin produced using the `bwplot` method can be observed in Figure 1(d).

Exercise 4

1. Create a boxplot using the formula `~ conc` and the lattice function `bwplot`.

2. Update the formula to `~ conc | Subject` in order to add a conditioning variable to the boxplot.

3. Add an additional argument `layout=c(6,1)` to the `bwplot` and observe its effect on the plot.

```
> myplot <- bwplot(~ conc | Subject, data = df, layout = c(1,6),
+                  main = "Concentration of Indomethicin",
+                  xlab = "Concentration (mcg/ml)"
+                  )
```
5 Further Reading

- The lattice package includes many detailed help pages. You can get an overview using the R command \texttt{help(package="lattice")}.
- A good source of several lattice plots along with the code that produced them is \url{http://lmdvr.r-forge.r-project.org}
- \textit{Multivariate Data Visualization with R} by Deepayan Sarkar the author of lattice. See \url{http://lmdvr.r-forge.r-project.org/}.

6 Session information

- R version 2.10.1 Patched (2009-12-14 r50736), i386-apple-darwin10.2.0
- Locale: C/C/C/C/C/en_US.utf-8
- Base packages: base, datasets, grDevices, graphics, methods, stats, tools, utils
- Other packages: ALL 1.4.7, AnnotationDbi 1.8.1, Biobase 2.6.1, DBI 0.2-5, RSQLite 0.8-0, genefilter 1.28.2, hgu95av2.db 2.3.5, lattice 0.17-26, org.Hs.eg.db 2.3.6
- Loaded via a namespace (and not attached): annotate 1.24.1, grid 2.10.1, splines 2.10.1, survival 2.35-7, xtable 1.5-6
Figure 1: Example lattice plots. By following the exercises in this lab, you should be able to reproduce these graphics.