
Counting and measuring aligned sequences

Martin Morgan∗

July , 2011

Abstract

This workshop is about effectively using the Rsamtools Bioconductor
package for exploration and initial analysis of high-throughput sequence
experiments. We investigate features such as: input of aligned reads;
querying regions of interest across many BAM files; extracting coverage
and nucleotide-level summaries; and querying indexed FASTA reference
sequences. The workshop touches on related infrastructure from Genom-
icRanges, ShortRead, and other packages, and uses as motivating exam-
ples subsets of in-house RNAseq, 1000 genomes, and Complete Genomics
data sets. The emphasis is on leading-edge features; attendees should be
prepared with the ‘development’ version of R and current Bioconductor
packages.

1 Basics
Exercise 1
This exercise is to ensure that software required for the workshop is installed.
Start R and load the following packages:

• Rsamtools

• leeBamViews

• org.Sc.sgd

• TxDb.Scerevisiae.UCSC.sacCer2.ensGene

Solution:

> library(Rsamtools)

> library(leeBamViews)

> library(org.Sc.sgd.db)

> library(TxDb.Scerevisiae.UCSC.sacCer2.ensGene)

∗mtmorgan@fhcrc.org

1

http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html
http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html
http://bioconductor.org/packages/devel/data/experiment/html/leeBamViews.html
http://bioconductor.org/packages/devel/data/annotation/html/org.Sc.sgd.html
http://bioconductor.org/packages/devel/data/annotation/html/TxDb.Scerevisiae.UCSC.sacCer2.ensGene.html
mailto:mtmorgan@fhcrc.org

Exercise 2
This exercise introduces BAM files and the BamFile and BamFileList classes,
including the use of element metadata to track information about samples.

Use the command system.file and dir to list all the BAM files in the bam

directory of the leeBamViews package.
Create a character vector of the paths to the files, and name the character

vector. One naming scheme uses basename to get the name of the file itself, and
sub to remove non-discriminating trailing characters.

Organize the file names into a BamFileList instance.
Add element metadata (values) to the list of bam files. Do this by creating

a DataFrame with columns corresponding to the genotype and lane (extracted
from the file names) of each file. Can you create the data frame in a way that
minimizes opportunities for mis-labeling lanes?

Finally, open the bam files. What is the rationale for opening the bam files
once?

Solution:

> fls <- dir(system.file("bam", package="leeBamViews"),

+ "bam$", full=TRUE)

> names(fls) <- sub("_13e.bam$", "", basename(fls))

> bam <- BamFileList(fls)

> regex <- "([[:alpha:]]+)([[:digit:]])"

> values(bam) <-

+ DataFrame(Genotype=factor(sub(regex, "\\1", names(bam))),

+ Lane=sub(regex, "\\2", names(bam)))

> open(bam)

BamFileList of length 8

names(8): isowt5 isowt6 rlp5 rlp6 ssr1 ssr2 xrn1 xrn2

Exercise 3
This exercise introduces the GappedAlignments class, and a simple interface to
bam files for retrieving information about aligned reads.

Extract the first element in the BamFileList created in the previous exercise.
Use this element and the readBamGappedAlignments function to read in all reads
in the BAM file. Explore the resulting object.

The bam files are a subset of the study; use table on the GappedAlignments
class to determine which reference sequence names the reads we have access to
came from. How many reads align to the positive and to the negative strand?
What’s a cigar? Are there any gaps in these aligned reads?

What does the keepSeqlevels function do? Why might it be useful?
The org.Sc.sgd.db annotation package contains objects that relate gene sym-

bols to information about them, e.g., the org.Sc.sgd.CHRLOC object relates the
SGD identifier (e.g., YMR297W to the chromosome and location at which the

2

http://bioconductor.org/packages/devel/data/experiment/html/leeBamViews.html
http://bioconductor.org/packages/devel/data/annotation/html/org.Sc.sgd.db.html

corresponding gene starts. Likewise, org.Sc.sgd.CHRLOCEND maps the SGD iden-
tifier to the genomic location where the gene ends. Use these objects and create
a GRanges object that specifies the genomic coordinates of YMR297W. We’ll call
this range the ‘region of interest’.

Use this the GRanges object created in the previous paragraph as the which

argument to readBamGappedAlignments to read in just those reads in the region
of interest.

Solution:

> aln <- readBamGappedAlignments(bam[[1]])

> aln <- keepSeqlevels(aln, "Scchr13")

> seqlevels(bam[[1]])

[1] "Scchr01" "Scchr02" "Scchr03" "Scchr04" "Scchr05" "Scchr06"

[7] "Scchr07" "Scchr08" "Scchr09" "Scchr10" "Scchr11" "Scchr12"

[13] "Scchr13" "Scchr14" "Scchr15" "Scchr16" "Scmito"

> start <- org.Sc.sgdCHRLOC[["YMR297W"]]

> end <- org.Sc.sgdCHRLOCEND[["YMR297W"]]

> which <- GRanges("Scchr13", IRanges(start, end))

> aln1 <- readBamGappedAlignments(bam[[1]], which=which)

Exercise 4
The package TxDb.Scerevisiae.UCSC.sacCer2.ensGene contains structural in-
formation about genes (e.g., exon boundaries, organization of exons into tran-
scripts and genes). Create a convenient reference txdb to the data base Scere-

visiae_UCSC_sacCer2_ensGene_TxDb present in this package.
Use the exonsBy function to extract the exons of in yeast, organized by gene.

In particular, select the exons corresponding to our region of interest, YMR297W.
The countOverlaps function is an efficient way to count the number of times

a query (e.g., the aligned reads) overlap one or more subjects (e.g., the regions
of interest). Use countOverlaps function to determine the number of times each
alignment overlaps exons in the region of interest.

There are several issues you’ll need to overcome: use renameSeqlevels to
make the sequence names of the alignments appropriate for the sequence names
used to denote exons (why are these names different?). The protocol used in this
experiment created reads that align to either strand, regardless of the strand
from which the gene that they are derived was coded on. Use the ignore.strand

argument to allow alignments to either strand.
Use table to summarize the number of times reads align to the region of

interest.

Solution:

3

http://bioconductor.org/packages/devel/data/annotation/html/TxDb.Scerevisiae.UCSC.sacCer2.ensGene.html

> txdb <- Scerevisiae_UCSC_sacCer2_ensGene_TxDb

> ex <- exonsBy(txdb, "gene")

> ex1 <- ex[["YMR297W"]]

> aln2 <- renameSeqlevels(aln, list(Scchr13="chrXIII"))

> cnt <- countOverlaps(aln2, ex1, ignore.strand=TRUE)

> table(cnt)

cnt

0 1

20369 14180

Exercise 5
Explore the coverage function.

Start by restricting attention to our region of interest, using keepSeqlevels

and renameSeqlevels to bring the sequence names in the gene model and the
alignments into line with the sequence names in the BAM files.

Use the coverage function on the alignments to summarize how many reads
cover each nucleotide. Use the shift and width arguments to restrict attention
to our region of interest. What is a run-length encoding? Why might it be
used? to represent coverage? What kinds of operations can be performed on a
run length encoding?

Now, write a function that takes as arguments a bam file ana an argu-
ment which specifying the region of interest. The function should (a) input
a GappedAlignments object; (b) keep only the sequence levels corresponding to
chromosome 13; (c) calculate coverage in the region of interest; and (d) converts
the run-length encoding of coverage to an integer vector.

Use sapply to apply the function you’ve just written to each bam file, for
our region of interest.

The result is a matrix (what are its dimensions?); plot it using matplot, with
type="l". Can you arrange for each genotype to be plotted in the same color?

Solution:

> ex2 <- renameSeqlevels(keepSeqlevels(ex1, "chrXIII"),

+ list(chrXIII="Scchr13"))

> aln1 <- keepSeqlevels(aln1, "Scchr13")

> coverage(aln1, shift=-start(ex2) + 1L, width(ex2))

SimpleRleList of length 1

$Scchr13

'integer' Rle of length 1599 with 1503 runs

Lengths: 2 1 1 1 1 2 2 ... 1 1 1 2 1 1

Values : 88 93 121 117 119 134 147 ... 141 142 144 145 149 159

> cvg <- function(bam, which) {

+ aln <- readBamGappedAlignments(bam, which)

4

+ aln <- keepSeqlevels(aln, seqlevels(which))

+ cvg <- coverage(aln, shift=-start(which) + 1L, width(which))

+ as.integer(cvg)

+ }

> Coverage <- sapply(open(bam), cvg, ex2)

> matplot(Coverage, type="l", col=values(bam)$Genotype, lty=1)

0 500 1000 1500

0
20

0
40

0
60

0
80

0

C
ov

er
ag

e

2 GC Content

NOTE: This section requires files that are not available during the workshop;
it is meant as a demo rather than series of exercises.

The Rsamtools contains several useful functions, in addition to readBam-

GappedAlignments. Some of these (e.g., scanBam are described in detail in the
vignette (try browseVignettes(’Rsamtools’)) that comes with the package.

The indexFa function allows one to create an index into a fasta file contain-
ing multiple sequences. These sequences, including arbitrary ranges within the
sequences, can the be input using scanFa. Here we get the coordinates of genes
(ignoring for simplicity the exon structure of the gene) on human chromosomes
8 and 9, using the hg18 build.

5

http://bioconductor.org/packages/devel/bioc/html/Rsamtools.html

> ## genes on chr 8 or 9

> library(Rsamtools)

> library(TxDb.Hsapiens.UCSC.hg18.knownGene)

> txdb <- Hsapiens_UCSC_hg18_knownGene_TxDb

> ex <- exonsBy(txdb, "gene")

> ex89 <- range(keepSeqlevels(ex, c("chr8", "chr9")))

> gn <- unlist(ex89[elementLengths(ex89) == 1], use.names=FALSE)

> names(gn) <- names(ex89[elementLengths(ex89) == 1])

Next we create an index into a file containing the complete sequences of chromo-
somes 8 and 9 from the same build (the index only needs to be created once), and
query the index for our regions of interest. From this we obtain a DNAStringSet

of sequences in our regions of interest.

> ## seq and GC content

> ## preparation

> indexFa("chr8-9.fa")

> seq <- scanFa("chr8-9.fa", gn)

Calculate the GC content of each reference sequence using alphabetFrequency.

> alph <- alphabetFrequency(seq, as.prob=TRUE)

> gc <- rowSums(alph[,c("G", "C")])

Now, create a list of BAM files referencing 64 different samples, adding
metadata to describe the samples in a way analogous to that done above.

> ## bam files

> dir0 <- "/mnt/cpl/data/Solexa/SOC/101101/Samples/"

> dir <- dir(dir0, "Benign|Normal|SOC", full=TRUE)

> fls <- list.files(dir, "*bam$", recursive=TRUE, full=TRUE)

> names(fls) <- sub(".*tophat_([^/]+).*", "\\1", fls)

> bam <- BamFileList(fls)

> re <- "^([[:alnum:]]+)_+([[:alnum:]]+).*"

> values(bam) <- DataFrame(Trt=sub(re, "\\1", names(bam)),

+ Id=sub(re, "\\2", names(bam)))

To start, use readGappedReads to input aligned reads from a single bam file
in our region of interest. readGappedReads includes the sequences, as well as
the coordinates of the alignments. Use countOverlaps to count the number of
single-hit alignments overlapping each gene. Plot the relationship between gc
content and counts per gene, e.g., as a box-and-whiskers plot.

> ## reads overlapping genes

> library(ShortRead)

> aln <- readGappedReads(path(bam[[1]]), which=gn)

> hits <- countOverlaps(aln, gn, ignore.strand=TRUE)

> cnt <- countOverlaps(gn, aln[hits==1], ignore.strand=TRUE)

> (bwplot(log(1+cnt)~cut(gc, 30), scales=list(x=list(rot=90))))

6

Figure 1: GC content and read counts. Left: reads aligning to genes as a
function of reference sequence GC content; Right: GC content of reads versus
corresponding reference gene sequence

Finally, use findOverlaps to identify alignments that overlap genic regions;
the code leading up to keep uses the overlaps to find reads hitting a single gene,
and is computationally more efficient that calling countOverlaps twice, as we
did in previous code chunks. Using the unique hits to retrieve the sequences of
individual reads, calculate the GC content of each read, and relate the mean
GC content of reads in each gene to the GC content of the gene itself.

> ## more detail -- gc content of aligned reads

> olap <- findOverlaps(aln, gn, ignore.strand=TRUE)

> hits <- tabulate(queryHits(olap), length(aln))

> keep <- queryHits(olap) %in% which(hits == 1)

> reads <- qseq(aln)[queryHits(olap)[keep]]

> readGc <- rowSums(alphabetFrequency(reads, as.prob=TRUE)[,c("G", "C")])

> readGcPerGene <- tapply(readGc, subjectHits(olap)[keep], mean)

> idx <- as.integer(names(readGcPerGene))

> xyplot(readGcPerGene ~ gc[idx],

+ panel=function(...) {

+ panel.xyplot(...)

+ panel.abline(0, 1, col="red", lwd=2)

+ panel.lmline(..., col="blue", lwd=2)

+ }, xlab="Reference", ylab="Query")

As an advanced exercise, generalize the preceeding work flow to work on all
of our bam files. Do this by encapsulating our work flow into a function on which
we can use lapply, sapply, or a multi-processor variant like multicore::mclapply.

> sessionInfo()

R Under development (unstable) (2011-07-26 r56509)

7

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] TxDb.Scerevisiae.UCSC.sacCer2.ensGene_2.5.0

[2] GenomicFeatures_1.5.16

[3] org.Sc.sgd.db_2.5.0

[4] RSQLite_0.9-4

[5] DBI_0.2-5

[6] AnnotationDbi_1.15.9

[7] leeBamViews_0.99.11

[8] BSgenome_1.21.3

[9] Biobase_2.13.7

[10] Rsamtools_1.5.43

[11] Biostrings_2.21.7

[12] GenomicRanges_1.5.21

[13] IRanges_1.11.15

loaded via a namespace (and not attached):

[1] biomaRt_2.9.2 RCurl_1.6-6 rtracklayer_1.13.10

[4] tools_2.14.0 XML_3.4-0 zlibbioc_0.1.7

8

	Basics
	GC Content

