
IRanges and GenomicRanges
An introduction

Kasper Daniel Hansen
<khansen@jhsph.edu>

CSAMA, Brixen 2011

1 / 28

Why you should care

IRanges and GRanges are data structures I use often to solve a variety of
problems, typically related to annotating the genome.

These data structures are very fast and efficient.

Every R user who deals with genomic data should master these packages.

These two packages are themselves compelling arguments for learning R!

2 / 28

Aims

We provide an overview of the two packages IRanges and
GenomicRanges.

At first, these two packages can appear daunting, with many classes and
functions. Luckily, things are not as hard as the first appear.

Both packages now contain very extensive and useful vignettes. Read
them!

3 / 28

Idea

A surprising amount of objects/tasks in computational biology can be
formulated in terms of integer intervals, manipulation of integer intervals
and overlap of integer intervals.

Objects: A transcript (a union of integer intervals), a collection of SNPs
(intervals of width 1), TF binding sites, a collection of aligned short reads.

Tasks: Which TF binding sites hit the promoter of genes (overlap
between two sets of intervals), which SNPs hit a collection of exons,
which short reads hit a predetermined set of exons.

IRanges are collections of integer intervals. GRanges are like IRanges, but
with an associated chromosome and strand, taking care of some book
keeping.

4 / 28

Basic IRanges

Specify IRanges by 2 of start, end, width (SEW).

> library(IRanges)

> ir1 <- IRanges(start = c(1,3,5), end = c(3,5,7))

> ir1

IRanges of length 3

start end width

[1] 1 3 3

[2] 3 5 3

[3] 5 7 3

> ir2 <- IRanges(start = c(1,3,5), width = 3)

> all.equal(ir1, ir2)

[1] TRUE

Assessor methods: start(), end(), width() and also replacement methods

> width(ir2) <- 1

> ir2

5 / 28

Basic IRanges
IRanges of length 3

start end width

[1] 1 1 1

[2] 3 3 1

[3] 5 5 1

They may have names

> names(ir1) <- paste("A", 1:3, sep = "")

> ir1

IRanges of length 3

start end width names

[1] 1 3 3 A1

[2] 3 5 3 A2

[3] 5 7 3 A3

and has a single dimension

> dim(ir1)

NULL

> length(ir1)

[1] 3

6 / 28

Aside: GRanges

GRanges are like IRanges but with a strand and a chromosome
(seqnames)

> gr <- GRanges(seqnames = "chr1", strand = c("+", "-", "+"), ranges = ir1)

> gr

GRanges with 3 ranges and 0 elementMetadata values

seqnames ranges strand |

<Rle> <IRanges> <Rle> |

A1 chr1 [1, 3] + |

A2 chr1 [3, 5] - |

A3 chr1 [5, 7] + |

seqlengths

chr1

NA

There are some additional differences, we will return to GRanges later.

7 / 28

Normal IRanges

A normal IRanges is a minimal representation of the IRanges viewed as a
set. Each integer only occur in a single range and there are as few ranges
as possible. In addition, it is ordered. Created by reduce().

ir

2 4 6 8 10

reduce(ir)

2 4 6 8 10

8 / 28

Normal IRanges

> ir

IRanges of length 4

start end width

[1] 1 4 4

[2] 3 4 2

[3] 7 8 2

[4] 9 10 2

> reduce(ir)

IRanges of length 2

start end width

[1] 1 4 4

[2] 7 10 4

“Which bases belong to an exon?”

9 / 28

Disjoin

ir

2 4 6 8 10

disjoin(ir)

2 4 6 8 10

“Which bases belong to the same set of exons?”

10 / 28

Manipulating IRanges

I shift(), narrow(), flank(), shift(), narrow(), restrict()

I union(), intersect(), setdiff() gaps() (returns normalized IRanges)

I punion(), pintersect(), psetdiff(), pgap()

11 / 28

Finding Overlaps

Finding (pairwise) overlaps between two IRanges is done by findOverlaps.
This function is amazingly fast!

> ir1 <- IRanges(start = c(1,4,8), end = c(3,7,10))

> ir2 <- IRanges(start = c(3,4), width = 3)

> ov <- findOverlaps(ir1, ir2)

> ov

An object of class "RangesMatching"

Slot "matchMatrix":

query subject

[1,] 1 1

[2,] 2 1

[3,] 2 2

Slot "DIM":

[1] 3 2

> matchMatrix(ov)

12 / 28

Finding Overlaps

query subject

[1,] 1 1

[2,] 2 1

[3,] 2 2

queryHits(), subjectHits() (often used with unique())

For efficiency, there is also countOverlaps()

> countOverlaps(ir1, ir2)

[1] 1 2 0

> args(findOverlaps)

function (query, subject, maxgap = 0L, minoverlap = 1L, type = c("any",

"start", "end", "within", "equal"), select = c("all", "first",

"last", "arbitrary"), ...)

NULL

13 / 28

Finding nearest IRanges

nearest(), precede(), follow(). Watch out for ties!

> ir1

IRanges of length 3

start end width

[1] 1 3 3

[2] 4 7 4

[3] 8 10 3

> ir2

IRanges of length 2

start end width

[1] 3 5 3

[2] 4 6 3

> nearest(ir1, ir2)

[1] 1 1 2

14 / 28

IRangesList

An IRangesList is simply a list of IRanges.

Why a separate class for this?

I Methods dispatching, “we know what we get”.

I Easy to specify input and output.

Many XXList exists.

One biology use case: the set of transcripts of a gene. Each transcript is
an IRanges, but we need something to glue the transcripts together.

15 / 28

Rle

Rle are “run-length encoded” vectors, which are very useful for
representing coverage vectors efficiently.

ir

2 4 6 8 10

> coverage(ir)

'integer' Rle of length 10 with 4 runs

Lengths: 2 2 2 4

Values : 1 2 0 1

> as.vector(coverage(ir))

[1] 1 1 2 2 0 0 1 1 1 1

runLengths(), runValues()

16 / 28

Computing on Rle
Rle’s can be extremely efficient, especially for really long vectors. They
support are a wide variety of operations

> coverage(ir1) + coverage(ir2)

'integer' Rle of length 10 with 7 runs

Lengths: 2 1 2 1 2 1 1

Values : 1 2 3 2 1 2 3

> range(coverage(ir2))

[1] 0 2

> log(coverage(ir2))

'numeric' Rle of length 6 with 4 runs

Lengths: 2 ...

Values : -Inf ...

aggregate() allows you to apply functions to the Rle inside an IRanges

> aggregate(coverage(ir2), IRanges(start = 3, width = 4),

+ FUN = mean)

[1] 1.5

17 / 28

Views

Often we have a big object (think genome) and we are interested in
subsets of this object.
These subsets may be thought of as IRanges inside the object. Think
exons and genome sequence. Key idea: store big object and just keep the
ranges.

> library(BSgenome.Scerevisiae.UCSC.sacCer1)

> vi <- Views(Scerevisiae$chr1,

+ start = seq(1, by = 10000, length = 20),

+ width = 1000)

> head(vi, n = 4)

Views on a 230208-letter DNAString subject

subject: CCACACCACACCCACACAC...TGGGTGTGGTGTGTGTGGG

views:

start end width

[1] 1 1000 1000 [CCACACCACACC...GGGTGCTATGA]

[2] 10001 11000 1000 [AGAATGAATCGG...TGGATATAAAT]

[3] 20001 21000 1000 [ATTATAATCCTC...CGGTCTGGTGT]

[4] 30001 31000 1000 [GATTTGTTCAAA...TTTTTTTTGTT]

18 / 28

Views

Views can also be made on coverage vectors

> coverage(ir)

'integer' Rle of length 10 with 4 runs

Lengths: 2 2 2 4

Values : 1 2 0 1

> Views(coverage(ir), start = 3, width = 4)

Views on a 10-length Rle subject

views:

start end width

[1] 3 6 4 [2 2 0 0]

19 / 28

IRanges: important types of objects

I IRanges (and normal IRanges), IRangesList

I Rle

I Views

I RangedData: IRanges with metadata, think IRanges + data.frame

These types of objects allow you to accomplish many useful tasks in a
very efficient manner, but they sometimes require a bit creativity.

20 / 28

Return to GRanges

GRanges are like IRanges with strand and chromosome. Strand can be
“+”, “-” and “*” (unknown strand or unstranded).

> gr

GRanges with 3 ranges and 0 elementMetadata values

seqnames ranges strand |

<Rle> <IRanges> <Rle> |

A1 chr1 [1, 3] + |

A2 chr1 [3, 5] - |

A3 chr1 [5, 7] + |

seqlengths

chr1

NA

strand(), seqnmes(), ranges(), start(), end(), width().
They operate within a universe of seqlengths.

> seqlengths(gr) <- c("chr1" = 10)

> gaps(gr)

21 / 28

Return to GRanges

GRanges with 5 ranges and 0 elementMetadata values

seqnames ranges strand |

<Rle> <IRanges> <Rle> |

[1] chr1 [4, 4] + |

[2] chr1 [8, 10] + |

[3] chr1 [1, 2] - |

[4] chr1 [6, 10] - |

[5] chr1 [1, 10] * |

seqlengths

chr1

10

And because the have strand, some operations are now relative to the
direction of transcription (upstream(), downstream()):

> flank(gr, 2, start = FALSE)

22 / 28

Return to GRanges

GRanges with 3 ranges and 0 elementMetadata values

seqnames ranges strand |

<Rle> <IRanges> <Rle> |

A1 chr1 [4, 5] + |

A2 chr1 [1, 2] - |

A3 chr1 [8, 9] + |

seqlengths

chr1

10

Finally, GRanges may have associated metadata.

> values(gr) <- DataFrame(score = c(0.1, 0.5, 0.3))

> gr

23 / 28

Return to GRanges

GRanges with 3 ranges and 1 elementMetadata value

seqnames ranges strand | score

<Rle> <IRanges> <Rle> | <numeric>

A1 chr1 [1, 3] + | 0.1

A2 chr1 [3, 5] - | 0.5

A3 chr1 [5, 7] + | 0.3

seqlengths

chr1

10

values(), elementMetadata()

24 / 28

Usecase I

Suppose we want to identify TF binding sites that overlaps known SNPs.

snps: GRanges (of width 1)
TF: GRanges

> findOverlaps(snps, TF)

(watch out for strand)

25 / 28

Usecase II

Suppose we have a set of DMRs (think genomic regions) and a set of
CpG Islands and we want to find all DMRs within 10kb of a CpG Island.

dmrs: GRanges
islands: GRanges

> findOverlaps(dmrs, resize(islands,

+ width = 20000 + width(islands), fix = "center"))

(watch out for strand)

26 / 28

Usecase III

Suppose we want to compute the average coverage of bases belonging to
(known) exons.

reads: GRanges exons: GRanges

> bases <- reduce(exons)

> nBases <- sum(width(bases))

> nCoverage <- sum(Views(coverage(reads), bases))

> nCoverage / nBases

(watch out for strand)

27 / 28

Session Info

I R version 2.14.0 Under development (unstable) (2011-06-20
r56188), x86_64-apple-darwin10.7.4

I Locale: en_US.utf-8/en_US.utf-8/en_US.utf-8/C/en_US.utf-

8/en_US.utf-8

I Base packages: base, datasets, graphics, grDevices, methods, stats,
utils

I Other packages: Biostrings 2.21.6, BSgenome 1.21.3,
BSgenome.Scerevisiae.UCSC.sacCer1 1.3.17, GenomicRanges 1.5.12,
IRanges 1.11.10

I Loaded via a namespace (and not attached): tools 2.14.0

28 / 28

