Short read quality assessment

Martin Morgan1

June 20-23, 2011
Why sequence?

- e.g., RNA-seq
 - Expression in novel (un-annotated) regions
 - Exon junction / RNA editing insights
 - Allele-specific / transcript isoform quantification
 - Non-model organisms
 - Greater dynamic range and sensitivity?

Lessons from microarrays
- Initially: variability between manufactures, technologies, labs
- MAQC: quality control standards and analysis protocols
Example work flow – [4]

Sample
- Purify poly(A)+ RNA with oligo(dT) magnetic beads
- cDNA synthesis primed with random hexamers

Microarray
- Dye-swap, hybridization, florescence, analysis

RNA-seq
- Fragment and size-select
- Illumina adapter ligation
Example work flow – [4]

Sample
 ▶ Purify poly(A)+ RNA with oligo(dT) magnetic beads
 ▶ cDNA synthesis primed with random hexamers

Microarray
 ▶ Dye-swap, hybridization, florescence, analysis

RNA-seq
 ▶ Fragment and size-select
 ▶ Illumina adapter ligation
Example work flow – [4]

Sample
- Purify poly(A)+ RNA with oligo(dT) magnetic beads
- cDNA synthesis primed with random hexamers

Microarray
- Dye-swap, hybridization, florescence, analysis

RNA-seq
- Fragment and size-select
- Illumina adapter ligation
Key issues

- **Experimental design** [1]
 - Replication
 - Randomization and blocking, e.g., batch effects
- **Depth of coverage**
 - Statistical power
 - Library complexity
- **Coverage heterogeneity**
 - Estimation biases
 - Legitimate comparison
- **Sequencing uncertainty** [2]
Key issues

- **Experimental design** [1]
 - Replication
 - Randomization and blocking, e.g., batch effects
- Depth of coverage
 - Statistical power
 - Library complexity
- Coverage heterogeneity
 - Estimation biases
 - Legitimate comparison
- Sequencing uncertainty [2]

ROC simulation
- Replication (red vs. blue)
- Randomization and blocking (solid vs. dot)
Key issues

- Experimental design [1]
 - Replication
 - Randomization and blocking, e.g., batch effects
- Depth of coverage
 - Statistical power
 - Library complexity
- Coverage heterogeneity
 - Estimation biases
 - Legitimate comparison
- Sequencing uncertainty [2]

Cumulative proportion of reads occurring 0, 1, ... times
Key issues

- Experimental design [1]
 - Replication
 - Randomization and blocking, e.g., batch effects
- Depth of coverage
 - Statistical power
 - Library complexity
- **Coverage heterogeneity**
 - Estimation biases
 - Legitimate comparison
- Sequencing uncertainty [2]

Actual versus uniform $\phi X174$ coverage
Key issues

- Experimental design [1]
 - Replication
 - Randomization and blocking, e.g., batch effects

- Depth of coverage
 - Statistical power
 - Library complexity

- Coverage heterogeneity
 - Estimation biases
 - Legitimate comparison

- Sequencing uncertainty [2]

Read count increases with gene length
Key issues

- Experimental design [1]
 - Replication
 - Randomization and blocking, e.g., batch effects
- Depth of coverage
 - Statistical power
 - Library complexity
- Coverage heterogeneity
 - Estimation biases
 - Legitimate comparison
- **Sequencing uncertainty** [2]

Reads, stratified by cycle, supporting a spurious SNP call in $\phi X174$
Case study

Subset of Brooks et al. [3]

- RNAi and mRNA-seq to identify pasilla-regulated alternative splicing
- Purified polyA, random hexamer primed
- Single- and paired end sequences
- Alignment to reference genome and curated splic junctions

