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These exercises introduce key Bioconductor packages and data structures
for working with sequence data. We start by loading a package designed for the
course.

> library(EMBL2011)

The package contains data sets, helper functions, and the course material. In
particular, the slides and labs are available by starting R and entering

> browseVignettes(package="EMBL2011")

This launches a web browser; the links labeled R contain scripts that can be run
as a short-cut to completing exercises.

1 Warming up

This section is for those who are not really comfortable with R; others may
skip it. R is a computer programming language. It has some familiar (to
programmers) data types and instructions, but has many unique features; in
many ways it is easier to learn R as a non-programmer than as someone with
experience in another programming language. Welcome!

A key concept in R is the variable. Variables are vector-valued and can be
of different types.

> x <- 1:10 # integer vector, 1, ..., 10

> y <- c(TRUE, TRUE, FALSE) # logical vector

> const <- c(pi=3.14159, e=2.718282) # named numeric vector

> misc <- # list of heterogeneous types

+ list(x=1:10, alph=c("a", "b", "c"))

Vectors can be sub-set by logical value, name, or integer index. An important
distinction is between subsetting with a single square bracket, which returns an
instance of the original object, versus element selection with a double square
bracket, which returns a specific element.
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> x[4:2]

> const["pi"] # a list of length 1, containing an element pi

> const[["pi"]] # not a list; the element pi

Vectors are a basic R type, but R itself and many additional packages define
classes representing complicated data structures that the user is expected to
manipulate.

> library(Biostrings)

> dna <- DNAString("AAACTCTAT")

> translate(dna)

The R help system is essential to discovering how to work with classes. The
elements of this system include interactive use

> class(dna)

coupled with ‘man’ pages accessible within R or via a web browser.

> ?DNAString

> help.start() # start the web-based help system

Bioconductor packages include vignettes that provide a rich textual description
of how the package is supposed to be used.

> browseVignettes(package="ShortRead")

The package vignette page also lists .R files. These contain the script used in
the vignette. Cut-and-paste from the script into an R session to speed through
an exercise.

2 RNA-seq

Start an R session and evaluate the following lines of code, adjusted to reflect
the location of data available for this workshop.

> fastqFiles <- file.choose()

> bamFiles <- file.choose()

> ## check

> stopifnot(length(list.files(fastqFiles)) == 2)

For these exercises we use a subset of the data from [1]. The experiment
is described in detail later in the course, but involved RNAi combined with
mRNA-seq in D. melanogaster. The data itself is available in GEO as part of
experiment GSE18508. We look at a subset of samples, summarized in Table 1.
There are three biological replicates of untreated and RNAi. The data were
collected over a period when there were very rapid changes in technology; the
samples with multiple runs are single-end reads, with fewer reads per run and
hence several runs per sample. Later samples were paired-end runs with more
reads per sample.
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Table 1: GEO records from GSE18508
Id Sample Run
708 S2 DRSC Untreated-1 SRR0317086
709 SRR0317096
710 SRR0317106
711 SRR0317116
712 SRR0317126
713 SRR0317136
714 S2 DRSC Untreated-3 SRR0317147
715 SRR0317157
716 S2 DRSC Untreated-4 SRR0317168
717 SRR0317178
718 S2 DRSC CG8144 RNAi-1 SRR0317189
719 SRR0317199
720 SRR0317209
721 SRR0317219
722 SRR0317229
723 SRR0317239
724 S2 DRSC CG8144 RNAi-3 SRR0317240
725 SRR0317250
726 S2 DRSC CG8144 RNAi-4 SRR0317261
727 SRR0317271

2.1 Reads
Exercise 1
This exercise reads in 2 fastq files. These contain sequence and quality infor-
mation from 1 million reads of a paired end run; the file name ending with
‘_1.fastq’ is the first mate pair. The reads have been sampled randomly from
a larger file.

a. Use list.files with the pattern argument to retrieve the full path to the
two files in the fastqFiles directory.

b. Name the elements of the list with the base name of each file path (i.e., the
file name; use basename), using sub to remove .fastq from the file name.

c. Use lapply and the readFastq function to read each file in to your R
session. Explore the object you have created.

Solution: Here we list all files in the path fastqFiles whose name matches
the pattern fastq, returning the full path to the file. fls is now a character
vector of length 2. We name the elements of the vector with their base name,
substituting the extension .fastq, with the empty string.

> fls <- list.files(fastqFiles, "fastq", full=TRUE)

> names(fls) <-sub(".fastq", "", basename(fls))
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Next, iterate over the vector of file names, reading in each. The result is a list,
each element of which is a ShortReadQ object. discover the class of an object
with class. Find out information about the class with, e.g., ?ShortReadQ. The
first line of code below is surrounded by parentheses (); this is a convenience for
both performing the action inside the parentheses (e.g., reading the files) and
displaying the result (printing the content of fq). Notice how the output list
retains the names of the input list, helping to avoid book-keeping mistakes.

> (fq <- lapply(fls, readFastq))

> class(fq) # list

> class(fq[[1]]) # list subset with [[, class ShortReadQ

> names(fq)

The first line of code is surrounded in parentheses (fq <- ...). This is a short-
cut to both assign the variable and print the result.

Exercise 2
The goal of the next several exercises is to summarize mono- and dinucleotide
use in our reads. Write a short function that takes as its input an instance of
ShortReadQ, and returns a vector containing the number of A, C, G, T, and N
(uncalled) nucleotides summarized over all reads. To do this, your function will

a. Extract the reads from an instance of the ShortReadQ class, using sread.

b. Calculate the frequency of the letters used in each read, using alphabet-

Frequency. Consult the help page for this function, ?alphabetFrequency,
and use the baseOnly and collapse=TRUE arguments to ignore IUPAC am-
biguity letters (there are none in our reads) and to report the nucleotide
counts over all reads (rather than for each read separately).

Solution: A function taking a ShortReadQ instance and returning nu-
cleotide counts is

> fun <- function(x)

+ alphabetFrequency(sread(x), baseOnly=TRUE, collapse=TRUE)

Applying this to each element of our list of ShortReadQ instances results in
(using sapply produces a matrix; note that the names of the files are again
carried through).

> (mono <- sapply(fq, fun))

Exercise 3
Write a function that accepts as input a ShortReadQ instance and returns di-
nucleotide frequencies. Use the dinucleotideFrequency function to do the cal-
culation. The operation is a little trickier, because dinucleotideFrequency does
not have an option to collapse counts over all reads. Instead. . .
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a. Use dinucleotideFrequency to create a matrix, with each column repre-
senting a different combination of nucleotides and each row a different
read.

b. Use colSums to sum up each column.

Apply this function to each element of fq.

Solution: A function taking a ShortReadQ instance and returning dinu-
cleotide counts is

> fun <- function(x)

+ colSums(dinucleotideFrequency(sread(x)))

Applying this function to the list of ShortReadQ instances and displaying the
first four records of the result (using head) is

> head(di <- sapply(fq, fun), 4)

The idiom head(di <- ...) is another short-cut that simultaneously assigns a
value to di and uses the object as the first argument to the head function; head
prints the first 6 (by default; 4 in the example above) lines of di.

Exercise 4
The following exercises asks about the distribution of ’GC’ nucleotide content
between reads. Start by writing a function that. . .

a. Uses alphabetFrequency to determine nucleotide use, but omit the collapse

function argument so that the result is a matrix summarizing use in each
read.

b. Subsets the nucleotide use matrix to select the ’G’ and ’C’ columns, and
uses rowSums to sum the GC content for each read (row of the matrix).

c. Uses tabulate to count how many times reads with 0, 1, . . . 37 ’GC’ occurs.
A trick here is that tabulate ignores zeros; by adding 1 to each count,
we get a vector where the first element is the number of reads with 0
’GC’ nucleotides, the second element is the number of reads with 1 ’GC’
nucleotide, and so on.

Solution: The distribution of GC content is:

> fun <- function(x)

+ {

+ abc <- alphabetFrequency(sread(x), baseOnly=TRUE)

+ gcPerRead <- rowSums(abc[,c("G", "C")])

+ wd <- unique(width(sread(x)))

+ tabulate(1 + gcPerRead, 1 + wd)

+ }

> (gc <- lapply(fq, fun))
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Exercise 5
Visualization is an important tool for gaining insight. R has flexible built-
in graphics commands, but additional packages provide expressive (lattice) and
pretty (ggplot2) alternatives. This lab uses lattice. Most lattice functions expect
a data frame in ‘long’ format, where one or more columns contain the data to be
plotted and additional columns are indicator variables indicating which group
the correspond rows belongs to.

Start by making a vector bins to indicate GC content (0, 1, . . . ). Use this
in creating a ‘long’ data frame with. . .

a. A column containing the counts calculated previously, using the unlist

function to make a single vector (rather than a list of length two, each
with a vector).

b. A column containing our ’GC’ content from bins, scaled to represent a
proportion

c. A column indicating which sample the row comes from. The sample iden-
tifier is taken from the names of gc object, each repeated as many times
as there are elements in the corresponding count vector.

A powerful and expressive feature of lattice is the use of a formula to describe
the relationship between plotted variables, in this case Count as a function of
GC content. The group argument plots subsets of data in the same panel. type

control what gets plotted – a background grid and both lines and points. pch

controls the type of point (try example(points)). auto.key control display of the
legend. file is used in this vignette; it is not part of lattice.

Solution: The following creates a ‘long’ data frame. . .

> bins <- seq_along(gc[[1]]) - 1

> df <- data.frame(Count=unlist(gc, use.names=FALSE),

+ GC=bins / bins[length(bins)],

+ Sample=rep(names(gc), sapply(gc, length)))

. . . and plots the result, Figure 1

> xyplot(Count~GC, group=Sample, df, type=c("g", "b"), pch=20,

+ auto.key=list(lines=TRUE, points=FALSE, columns=2),

+ file="gc")

Exercise 6
A simple null expectation is that dinucleotide frequencies are the product of the
mononucleotide frequencies.

a. Calculate the frequency of mononucleotides (ignoring ‘N’ for simplicity),
and use the outer product, applied to each sample, to determine the ex-
pected dinucleotide frequency.
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Figure 1: Read GC content.

b. Express expected dinucleotide frequencies in each sample as counts by
multiplying by the sample total dinucleotide count.

c. Use chisq.test to calculate a χ2 test on each sample.

Create a graphical display of the results, and comment on the results.

Solution:

> ## outer product of mononucleotides frequencies

> f <- mono[-5,] / colSums(mono[-5,])

> exp0 <- apply(f, 2, function(x) as.vector(outer(x, x)))

> ## expected values, as counts

> n <- colSums(di)

> exp <- exp0 * n[col(exp0)]

> mode(exp) <- "integer"

> head(exp, 3)

> ## Chi-squared test

> for (i in seq_len(ncol(di)))

+ print(chisq.test(cbind(di[,i], exp[,i])))

To display the data using lattice, create a ‘long’ data frame:

a. Coerce the observed and expected matrix to vectors, with as.vector.
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b. Provide an indicator variable based on the row names of the observed
matrix. R’s recycling rules mean that this vector is extended to the correct
length. R represents a matrix as a vector with entries from column 1 first,
column 2 next, etc. This means that the recycled row names align correctly
with the vectors coerced from the matrix of observed or expected values.

c. Provide an indicator variable based on the column names of the matrix.
Recycling can’t be used directly (why not?); the col function provides an
index that places the column names in the correct position.

d. Specify stringsAsFactors=FALSE, because we do not wish our string vari-
ables – Pair and Sample – to be treated as factors.

The conditioning bar | in the lattice formula indicates that a separate panel
should be plotted for each sample (how does this differ from group?). the panel

argument describes how each panel will be created – drawing a horizontal line of
color gray (panel.abline) followed by placement of text at particular coordinates
(panel.text; the ‘usual’ xy plot panel function is panel.xyplot). Note the use
of ... to forward arguments not directly used by our custom panel function.

> ## display

> df <- data.frame(Observed=as.vector(di), Expected=as.vector(exp),

+ Pair=rownames(di), Sample=colnames(di)[col(di)],

+ stringsAsFactors=FALSE)

> xyplot(Observed - Expected ~ Expected | Sample, df, aspect="iso",

+ panel=function(..., subscripts) {

+ panel.abline(h=0, col="gray")

+ panel.text(..., labels=df$Pair[subscripts])

+ }, file="dinuc")

The result is in Figure 2, with the following interesting points:

a. The χ2 test indicates departure from the null.

b. There is a strong bias against TA dinucleotides; knowledge of TA use in the
reference genome would help us to understand whether this is a biological
result or a technical artifact.

c. Similarly, G, C nucleotide pairs are most common.

d. The χ2 test is not really satisfactory, because each nucleotide in a read is
counted twice (as the first and then second nucleotide in the pair). Any
suggestions for improving the analysis?

Exercise 7
Nucleotide counts in each cycle of a read provide important insight into sample
preparation and technological artifacts.
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Figure 2: Deviation of observed from expected dinucleotide counts.

a. Write a short function that extracts reads from a ShortReadQ object and
uses alphabetByCycle to summarize nucleotide use by cycle. Subset the
value returned by alphabetByCycle to include only the nucleotides A, C,
G, T.

b. Apply this function to fq, and explore the result.

c. Display the result using lattice. To do this, cast the results into a long
data frame, and then use xyplot. It is easiest to start with a simple plot,
and to subsequently adjust display and formatting.

Solution: Here we calculate and plot DNA alphabet use as a function of
cycle. The dnacol object is a named vector defined in the EMBL2011 package;
the names are nucleotides and the values codes that represent colors.

> fun <- function(x)

+ alphabetByCycle(sread(x))[names(dnacol),]

> abc <- lapply(fq, fun)

> abc[[1]][,1:5]

The following creates a ‘long’ data frame and displays the result using lattice.

> ## create a 'long' data frame

> nuc <- rownames(abc[[1]])
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Figure 3: Alphabet-by-cycle.

> ncycle <- sapply(abc, ncol)

> cycle <- rep(sapply(ncycle, seq), each=5)

> sample <- rep(names(abc), sapply(abc, length))

> df <- data.frame(Count=unlist(abc, use.names=FALSE),

+ Nucleotide=factor(nuc, levels=names(dnacol)),

+ Cycle=cycle, Sample=sample)

> ## plot Count as a function of cycle, with separate panels

> ## for Sample, and with Nucleotide used to group lines

> ## within a panel.

> xyplot(Count ~ Cycle | Sample, group=Nucleotide, df, type="l",

+ key=list(lines=list(col=unname(dnacol)), columns=5,

+ text=list(lab=names(dnacol))),

+ col=dnacol, file="abc-read")

Interesting points (some well-known) from Figure 3 include:

a. Primers introduce initial bias, through cycle ≈ 12.

b. Under a null of uniform coverage, lines should be horizontal; but the plots
suggest that A, T decrease in frequency as cycles progress. This is much
more pronounced in early (GAI) Solexa / Illumina runs.

c. There is a weak but consistent periodic bias – e.g., every second cycle has
relatively more A, T.
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Exercise 8
Base quality decreases as cycle number increases. Calculate the average quality
per cycle, and display the result. To calculate quality per cycle, write a short
function that. . .

a. Extracts the quality score from a ShortReadQ instance using the quality

function.

b. Coerces the quality score to a numerical matrix representation using the
as function. This matrix has as many rows as there are reads, and as
many columns as there are cycles.

c. Calculate the average quality score of each cycle using colMeans.

d. Develop a second function that calculates an overall read quality using
rowMeans.

Apply these functions to each ShortReadQ instance, and visualize the result
using lattice.

Solution: Calculating quality by cycle requires translating character encod-
ings to their numeric representation. The average quality of the second read of
the pair is lower than that of the first read.

> fun <- function(x)

+ colMeans(as(quality(x), "matrix"))

> abc <- sapply(fq, fun)

The following creates a ‘long’ data frame and displays the result.

> df <- data.frame(Mean=as.vector(abc), Cycle=seq_len(nrow(abc)),

+ Sample=rep(colnames(abc), each=nrow(abc)))

> xyplot(Mean ~ Cycle, group=Sample, df, type="b", pch=20,

+ auto.key=list(lines=TRUE, points=FALSE, columns=2),

+ file="abc-quality")

Using the average quality of each read as a measure of ‘overall quality’, we have

> fun <- function(x)

+ rowMeans(as(quality(x), "matrix"))

> qual <- lapply(fq, fun)

> ## display -- hexbinplot to avoid plotting a million points

> xyplot(SRR031724_2_subset~ SRR031724_1_subset, qual,

+ aspect="iso", xbins=50,

+ panel=function(...) {

+ panel.hexbinplot(...)

+ panel.abline(0, 1, lty=3)

+ },

+ file="quality-by-read")

Interesting, mostly well-known, points from Figure 4 include:
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Figure 4: Quality-by-cycle (left) and distribution of read quality (right).

a. Average quality declines with cycle.

b. The second mate of paired reads is consistently lower quality.

c. Average quality and error are related (larger deviation from the diagonal
at higher quality scores).

Exercise 9
Individual read sequences can be represented 1, 2, . . . times in a sample. The
overall extent to which reads are duplicated can indicate depth of coverage.
Singleton sequences (represented exactly once) and sequences with very high
representation often reflect limitations of technology. Create and interpret a
figure that plots the cumulative number of reads as a function of the number of
times a read occurs in a sample.

Solution:

> fun <-

+ function(x, sample)

+ {

+ t <- tables(sread(x)[c(TRUE, FALSE)], n=0)[["distribution"]]

+ with(t, data.frame(nOccurrences=nOccurrences,

+ CummulativeReads=cumsum(nOccurrences * nReads),

+ Sample=sample))

+ }

> tbl <- do.call(rbind, Map(fun, fq, names(fq)))

> ## display

> xyplot(CummulativeReads ~ log(nOccurrences), group=Sample, tbl,

12



log(nOccurrences)

C
um

m
ul

at
iv

eR
ea

ds

400000

420000

440000

460000

480000

500000

0 2 4 6

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●
●●● ●●●●●●●●● ●●●●● ●

●

●

●

●

●

●
●

●
●

● ● ● ●●●●●●●●●●●●●●●●●●●●●●●● ● ●●● ● ● ● ●

SRR031724_1_subset SRR031724_2_subset

Figure 5: Cumulative frequency of reads occurring 1, 2, . . . times.

+ type=c("b", "g"), pch=20,

+ auto.key=list(lines=TRUE, points=FALSE, columns=2),

+ file="freqseq")

Interesting points (Figure 5):

a. The intercept (singleton reads) will decrease as sample size increases –
repeated observation of the same reads. The large value here implies
limited coverage.

b. That the second of the read pair is above the first might partly reflect
elevated error rates.

c. The most abundant reads in the second of the read pair reflects bias –
particular sequences (degenerate?) become super-abundant.

Exercise 10
ShortRead can create a report summarizing several fastq files. A short script
(see the appendix) was used to summarize all fastq files; here we read in the
summary and generate the report.

a. Load the data R object qa_GSM461176_81, representing the qa summary
of GSM records 461176 through 461181. The path to the object is
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> qaFile <- system.file("data", "qa_GSM461176_81.rda",

+ package="EMBL2011")

b. Use the report function to generate a report, by default in a temporary
directory.

c. Browse the report using browseURL.

The ‘Id’ column in Table 1 is used to identify samples in the QA report; _1 or
_2 refers to the first and second mate in paired end runs. Reflect on the quality
of the reads in this experiment.

Solution:

> load(qaFile)

> rpt <- report(qa_GSM461176_81)

> browseURL(rpt)

If for some reason the report generation fails, a copy is available at

> rpt <- system.file("GSM461176_81_qa_report", "index.html",

+ package="EMBL2011")

> browseURL(rpt)

Interesting points:

a. Substantial variation in number of reads per sample; low read counts in
samples 709, 719, 723.

b. GC content of 718-723 is unusual – all from S2_DRSC_CG8144_RNAi-1.

c. Samples are quite heterogeneous in distribution of read qualities.

d. Read distributions are not super-saturated – opportunity for greater se-
quencing? Sample 719 is unusual – disproportionate representation of very
common sequences.

e. All samples show initial primer bias; some samples, e.g., 708, 713, 717 2
show cycle-specific base trends. Sample 723 has unusual final nucleotides.

f. Samples differ in read length, maximum quality – likely different machines
and chemistry. 708-713, 718-723 are longer with low-quality tails.

2.2 Alignments

The primary goal of this exercise is to become familiar with the Rsamtools
package for querying BAM alignment files
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Exercise 11
The goal of this exercise is to open several BAM files as a BamFileList, and to
query one BAM file for the information about the reference sequences to which
reads have been aligned (using the seqinfo function) and the software tools used
to perform the alignment (using scanBamHeader and parsing the return value).

Solution: Create a list of BamFile objects, each pointing to a file and its
index. Using a BamFile avoids loading the index each time the file is used.

> fls <- list.files(bamFiles, "bam$", full=TRUE)

> bam <- open(BamFileList(fls))

> names(bam) <- sub(".bam", "", basename(fls))

Summary information is available in the header of each file, e.g., querying for
a summary of (reference) sequences and their lengths, or as tags available in
the text element of the header (see the samtools web site for details of header
content, including meaning of tags). For instance, our BAM files record the
command line used to generate them.

> seqinfo(bam[[1]])

> h <- scanBamHeader(bam[[1]])[["text"]]

> noquote(unname(sapply(h[["@PG"]], strwrap)))

Exercise 12
Common operations on BAM files are available as functions. For instance,
countBam counts the number of reads in each BAM file. A more interesting use
is to specify the param argument to this and other Rsamtools functions.

a. Create a GRanges object containing coordinates of four Drosophila genes;
see the solution for one such set.

b. Create a ScanBamParam object to specify the regions on which BAM file
operations are to be performed.

c. Use countBam to count reads in each of the regions.

d. Aligned reads have various flags that summarize the status of the read or
alignment. Use countFlags to summarize flags of reads in one of the genes.

Solution: countBam can be used to retrieve the number of reads aligned in
each BAM file. N.B., countBam is not meant to be used for counting reads in
complex regions as in an RNAseq analysis; see ?countGenomicOverlaps.

> ## do not evaluate

> cnt <- countBam(bam)

The ScanBamParam function creates an object that allows easy access to particular
portions of the file. For instance, the which argument can be used to select
which genomic regions are accessed. The which argument could be one of several
different objects, for instance a GRanges containing chromosomes and the regions
of interest.
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Figure 6: Number of reads aligning to regions of interest.

> which <-

+ GRanges(c("chr3L", "chrX", "chrX", "chr3L"),

+ IRanges(c(1871574, 10675019, 10672923, 14769596),

+ c(1876336, 10680978, 10680913, 14779523)))

> param <- ScanBamParam(which=which)

> head(cnts <- countBam(bam, param=param))

> cnts$rgn <- with(cnts, sprintf("%s:%d-%d", space, start, end))

> xyplot(file~records, group=rgn, cnts, type="b", pch=20,

+ auto.key=list(lines=TRUE, points=FALSE, columns=2),

+ file="bam-regions")

The results are shown in Figure 6.
BAM files contain a flag field encoding information about the aligned reads,

e.g., the strand to which they aligned, whether they are mate paired, whether
the pairs are ‘proper’ in the eyes of the alignment tool producing the BAM
file. Here we summarize reads satisfying various flags (note that a read may
be tallied under more than one category, e.g., is a proper pair and is on the
negative strand).

> param1 <- ScanBamParam(which=which[4])

> countFlags(bam, param=param1)

> bam2 <- bam[-c(1, 4, 5)]
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Exercise 13
The previous exercise introduced BAM files, some aspects of the ScanBamParam
class, and built-in functions for retrieving information from the file.

This and the next exercise illustrates how Rsamtools can be used more cre-
atively. As a first step, suppose one is interested in the ‘insert’ distance between
mapped reads of a mate pair. Construct a ScanBamParam object with:

a. The flag argument, determined by the scanBamFlags function, to select
the first read of each ‘proper’ mate pair.

b. The which argument and GRanges class created above, to restrict the query
to a particular region of the genome.

c. The what argument to return the pos (alignment position) and mpos (mate
read alignment position; arguments are described on ?scanBam help page).

Use this, the BamFileList object, and the scanBam function to query the BAM
files for the relevant information. The insert width is the absolute value of the
difference between the pos and mpos locations; calculate this for each sample,
and summarize as cumulative distribution.

Solution: Here is the ScanBamParam object:

> param2 <- ScanBamParam(

+ what=c("pos", "mpos"), which=which[4],

+ flag=scanBamFlag(isProperPair=TRUE, isFirstMateRead=TRUE))

Now query the BAM files, and take a look, using str, at the list-of-list-of-lists
returned:

> iwd0 <- lapply(bam2, scanBam, param=param2)

> str(iwd0)

Starting at the innermost list, the absolute value of the difference between each
element of the pos and mpos vectors represents the insert width (not quite –
what distance does this actually measure? What additional information would
be required to measure the insert distance? Is this information available from
the BAM file?). This information is itself represented in a list, so write a function
that extracts the first element of a list, and then calculates the distance between
mate pairs. Use lapply to calculate this distribution for each sample.

> fun <- function(elt)

+ with(elt[[1]], abs(pos - mpos))

> str(iwd <- lapply(iwd0, fun))

To visualize the distribution, use (from the lattice package) the make.groups

function, invoked with do.call, to create a data frame with two columns, and
suitable for use in densityplot.
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Figure 7: Insert size of proper mate pairs at chr3L:1871574-1876336.

> df <- do.call(make.groups, iwd)

> densityplot(~data, group=which, df, plot.points=FALSE,

+ auto.key=list(lines=TRUE, points=FALSE, columns=2),

+ file="insert")

3 Microbiome / 454 sequences

Microbiome sequencing projects characterize the representation of organisms in
well-defined communities (e.g., flora of the human gut). Metagenomics aims
one step further, asking about the biological functions provided by the suite of
organisms found in a community. Both endeavors rely on assignment of longer
(200-400bp) sequence reads to a reference database of taxa.

A typical microbiome work flow involves collection of DNA samples from a
large number (10’s to 100’s) of individuals. Targeted PCR enriches samples for
one or a few phylogenetically informative markers, e.g., specific regions of 16s
RNA. A bar code is added to PCR-enriched DNA to allow sample multiplex-
ing. Sequencing uses a technology, e.g., 454, that produces reads that are long
enough to provide phylogenetic signal. Sequence processing requires reads to
be de-multiplexed. There are typically PCR artifacts (e.g., primer sequence) to
be cleaned. Pre-processed reads are aligned to curated collections of reference
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genomes, with representation of taxa in the sample inferred from reads aligned
to reference genome.

These exercises focus on read manipulation prior to classification, with em-
phasis on

1. Data input.

2. Sub-sequence extraction and manipulation

3. Pattern matching.

The data are a subset of bacterial 16s sequences sampled from a human body
cavity. Down-stream analysis (beyond the scope of this tutorial) can use excel-
lent R packages for community and phylogenetic analysis (e.g., ape, vegan).

Exercise 14
454 technology is different from the Illumina platform. Reads are initially made
available as ‘flows’ in the sff file format. Unfortunately, there are no Biocon-
ductor packages that work directly with sff files. Instead, analysis begins with
fastq-like data, typically presented as pairs of fasta sequence (.seq) and quality
(.qual) files.

Input the sample data using the read454 function from the ShortRead pack-
age. The data is represented as a ShortReadQ object, the same as seen earlier.
Note that the read widths are longer (up to 342 cycles) and variable. Quality
scores also follow a different pattern. Subset the reads to contain only those
with width 250 or more, then use the narrow function to look at the average
quality of the trailing 250 nucleotides.

Solution: Here we read in the data.

> rp <- RochePath(barFiles)

> (bar <- read454(rp, "1.*fna", "1.*qual"))

> summary(width(bar))

Here we select reads with width 254 and look at the alphabet cycle at posi-
tions 100-110. Reads with this width

> bar254 <- bar[width(bar) == 254]

> alphabetByCycle(narrow(sread(bar254), 101, 110))[1:4,]

Exercise 15
Microbiome studies generally benefit from many individuals and relatively fewer
sequences. Samples are therefore multiplexed by preceding the target sequence
with a bar code, in this case associated with the first 8 nucleotides of each read.

a. Use narrow function to isolate the bar codes.

b. Use table to determine the occurrence of each code.
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c. Create a subset of reads corresponding to the most common bar code, and

d. Use narrow again, this time trimming the bar code and two adapter nu-
cleotides (nucleotides 1-10) from the sequences.

Solution: The following narrows the reads to positions 1-8 (containing the
bar code), and then tabulates and sorts, using standard R functions, the number
of times each bar code occurs. We then focus on the most abundant bar code.

> codes0 <- narrow(sread(bar), 1, 8)

> codes <- as.character(codes0)

> (cnt <- sort(table(codes), decreasing=TRUE)[1:5])

> (aBar <- bar[codes==names(cnt)[[1]]])

Now that aBar consists of reads from a single bar code, we can remove those
nucleotides using narrow to focus on the 11th through final nucleotides

> (noBar <- narrow(aBar, 11, width(aBar)))

Exercise 16
A typical microbiome sample preparation involve targeted PCR amplification.
In this case the (redundant) PCR primer is present in the read. Further, the
primer is not always present fully intact. The primer sequence is

> pcrPrimer <- "GGACTACCVGGGTATCTAAT"

Trim the primer using the pattern-matching function trimLRPatterns. Sum-
marize the amount of trimming that has occurred by tabulating the difference
between the width of the sequences with the bar codes removed, and the same
sequences with the primer trimmed.

Solution:

> (trimmed <-

+ trimLRPatterns(pcrPrimer, subject=noBar, Lfixed=FALSE))

> table(width(noBar) - width(trimmed))
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A Appendix

These functions set paths to point to appropriate locations when the vignette
is being produced.

> if (!interactive()) {

+ ## set up custom file paths

+ fastqFiles <- "~/EMBL/bigdata/fastq"

+ bamFiles <- "~/EMBL/bigdata/bam"

+ barFiles <- "~/EMBL/bigdata/bar"

+ }

> NA

These functions ‘wrap’ xyplot and densityplot so that they print to a file
when the vignette is processed to a PDF.

> ## wrap lattice functions to print to file when run in batch mode

> plt <-

+ if (!interactive()) {

+ function(fun, file, ...) {

+ pdf(sprintf("%s.pdf", file))

+ print(fun(...))

+ invisible(dev.off() )

+ }

+ } else {

+ function(fun, file, ...) fun(...)

+ }

> xyplot <- function(..., file)

+ plt(lattice::xyplot, file, ...)

> densityplot <- function(..., file)

+ plt(lattice::densityplot, file, ...)

> dotplot <- function(..., file)

+ plt(lattice::dotplot, file, ...)

> ## don't open a web browser when run in batch mode

> if (!interactive())

+ browseURL <- function(...) {}

> NA

The QA report data was collated with the following script. For each fastq file,
we create an identifier id from its file name, and read the file in with readFastq,
and calculate summary statistics using qa. doit will perform an lapply operation
on each file, but if the multicore package is available the operation will be in
parallel. The result qas is a list of qa summaries; these are bound together into
a single object using rbind.

> fun <- function(fl) {

+ id <- sub(".fastq$", "", basename(fl))

+ qa(readFastq(fl), id)
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+ }

> fls <- list.files(pattern=".fastq$", full=TRUE)

> doit <-

+ if (suppressWarnings(require("multicore"))) {

+ mclapply

+ } else lapply

> qas <- doit(fls, fun)

> qa_GSM461176_81 <- do.call(rbind, qas)
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