Annotation and down-stream analysis — lab

Martin Morgan*

June 20-23, 2011

Annotations are used to understand results of an analysis, e.g., relating
microarray probe sets to the gene names or symbols that they interrogate, or
placing genes into biochemical pathways or gene ontologies. Sequence data
differs from microarrays in that regions emerging from the analysis are not
strictly pre-determined (as, e.g., by probes placed on a microarray); annotations
are used more directly in analysis (e.g., defining regions in which ‘counts’ are
determined) or as a way to place new information into a spatial context (e.g.,
proximity of ChIP peaks to existing genes; assessing the plausibility of novel
transcripts).

This lab explores how to effectively use Bioconductor annotation resources.

> library(EMBL2011)

1 Bioconductor resources

Bioconductor provides annotation resources for organisms (the ‘org.*’ pack-
ages), homology, microarrays, gene ontology (GO.db) and KEGG pathways
(KEGG.db), and many others. The BSgenome package provides whole-genome
sequences for model and other organisms. The GenomicFeatures package can
be used to retrieve and curate structural information from the UCSC, Biomart
and other web sites.

1.1 Genes

Exercise 1
Basic annotations about genes are found in a suite of ‘org’ packages, e.g.,
org.Dm.eg.db.

a. Load the org.Dm.eg.db package, list the symbols defined in this package
(using the appropriate name returned by search() as the first argument
to 1s).

b. Use the function org.Dm.eg() and the R help system (e.g., ?org.Dm.egPATH
to discover curation (metadata) details about the data in this package.

*mtmorgan@fhcrc.org

http://bioconductor.org/packages/release/bioc/html/GO.db.html
http://bioconductor.org/packages/release/bioc/html/KEGG.db.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://genome.ucsc.edu
http://biomart.org
http://bioconductor.org/packages/release/bioc/html/org.Dm.eg.db.html
http://bioconductor.org/packages/release/bioc/html/org.Dm.eg.db.html
mailto:mtmorgan@fhcrc.org

Solution: Load the package as:

> library(org.Dm.eg.db)

Metadata is available using org.Dm.eg(). Maps and other information provided
by the package are on the search path. Details about individual maps can be
found on the corresponding help page.

> org.Dm.eg() # metadata

> search() # packages on the 'search' path
> 1s("package:org.Dm.eg.db") # available maps

> ?org.Dm.egPATH

Exercise 2

org.*

packages contain a number of ‘bimaps’. FEach bimap describes the rela-

tionship between an ‘Lkey’ and an ‘Rkey’ (roughly, key and corresponding value
in a hash table). The central key used in a package is indicated in the package
name; *.*.eg.db packages use the entrez gene identifier.

a.

b.

What is the bimap relating Entrez and Ensembl gene identifiers?

The Lkey can be used to subset a bimap using the [operator. Create a sub-
map of the Entrez=to-Ensembl map for the Entrez identifiers c("32007",
"32008", "38248", "39611").

Query the sub-map for the ‘Lkeys’ present using mappedLkeys, and the
‘Rkeys’ with mappedRkeys.

Many maps can be reversed, e.g., to map from Ensembl to Entrez iden-
tifiers. Use revmap to reverse the Entrez-to-Ensembl map, and query the
reversed map with known Ensembl identifiers (e.g., the ids from the previ-
ous question). The ‘L’ and ‘R’ in mappedLkeys and mappedRkeys functions
refer to the original map.

Maps can be expanded to reveal their detail with, e.g., toTable or as.list.
Display the data frame (toTable) or list (as.list) associated with the
Ensembl-to-Entrez map subset for a few known Ensembl identifiers.

Individual entries in a bimap can be extracted with [[use this to extract
the gene name associated with Entrez identifier 32008.

Solution: The bi-map between Entrez- and Ensembl gene identifiers is
org.Dm.egENSEMBL. Subset the map with the usual single square bracket [with
arguments being Entrez gene identifiers. Retrieve the ‘Lkeys’ in the map (should
be the same as egids), and the ‘Rkeys’ to which they map.

> org.Dm.egENSEMBL

> egid <- c¢("32007", "32008", "38248", "39611")
> (eg2ens <- org.Dm.egENSEMBL [egid])

> mappedLkeys (eg2ens)

> (ensid <- mappedRkeys (eg2ens))

Reverse the map and go from Ensembl ids to Entrez ids. The ‘Lkeys’ and ‘Rkeys’
refer to ‘left’ and ‘right’ in the original (non-reversed) map.

> (ens2eg <- revmap (org.Dm.egENSEMBL) [ensid])
> mappedLkeys (ens2eg)

A fuller representation of the map can be obtained.

> toTable(ens2eg)
> str(as.list(ens2eg))

Double square brackets extract a single entry.

> org.Dm.egGENENAME[["32008"]]

Exercise 3

Four genes of interest identified in Figure 3 of [1] are Ant2, sesB, bmm, and dre4.
These identifiers are gene ‘symbols’, an easily remembered but notoriously poor
(because there is a many-to-many map between symbol and gene) choice. Use
the org.Dm.egALIAS2EG map (the Lkeys are still Entrez identifiers) to translate
symbol names to Entrez identifiers, and Entrez identifiers to Ensembl identifiers.

Solution:

symid <- c("Ant2", "sesB", "bmm", "dre4")
(sym2eg <- org.Dm.egALIAS2EG[symid])
toTable (sym2eg)

egid <- mappedLkeys (sym2eg)

eg2ens <- org.Dm.egENSEMBL [egid]

(ensid <- mappedRkeys (eg2ens))

names (ensid) <- symid

ensid

vV VVVVVVYV

Exercise 4
Use toTable on each translation to display the map as a data frame, and then
merge both data frames to create a summary of all three identifiers.

Solution:

> (tbl <- merge(toTable(sym2eg), toTable(eg2ens)))

1.2 Transcripts

Exercise 5
a. (This part requires internet access) Use makeTranscriptDbFromUCSC to re-
trieve information about the physical structure of genes from the UCSC
genome browser. Retrieve information for the dm3 genome (D. melanogaster,
version 3) and the ensGene table.

b. Save the data as a SQLite data base to a local disk. Load it again. Query
the object for information about its provenance, using metadata.

c. As an advanced exercise, query the data base from the command line,
using SQLite (if installed).

Solution: The following command retrieves and save the current informa-
tion (tempdir () is a temporary location that will be destroyed when the R session
ends). Be sure to name the file with the .sqlite extension.

> (txdb <- makeTranscriptDbFromUCSC("dm3", "ensGene"))
> (txdbFile <- file.path(tempdir(), "dm3.ensGene.txdb.sqlite"))
> saveFeatures (txdb, txdbFile)

The EMBL2011 package contains a snapshot of this data base; load that into
the current R session.

> txdbFile <- system.file("extdata", "dm3.ensGene.txdb.sqlite",
+ package="EMBL2011")

> txdb <- loadFeatures(txdbFile)

> head(metadata(txdb))

Exercise 6
a. Query the txdb object for a list of transcripts grouped by gene using the
transcriptsBy.

b. Try accessing the elements of the returned list, e.g., selecting the first or
first several transcripts, or the transcripts associated with the dre4 symbol
from a previous exercise.

c. Extract the transcript names from the object, both for a single transcript
and for all transcripts. To extract one transcript, use the [[]] notation.

d. Query the txdb object for the sequences that are currently ‘active’ using
isActiveSeq. Change the active sequences to exclude the ‘Het’ and ‘extra’
chromosomes, and retrieve the list of transcripts grouped by gene, and
exons grouped by gene.

Solution: Extracted transcripts are returned as a GRangesList. The names
of the list elements are the Ensembl (in this case) gene names. The transcript

name and (internal) identifier are also returned. The metadata from the data
base is present in the GRangesList.

GRangesList are like a regular list, in terms of sub-setting, e.g., by name,
numeric, or logical index. Each element of the GRangesList is a GRanges in-
stance.

> tx <- transcriptsBy(txdb, '"gene")
> length(tx)

> head(tx, 2)

> head(metadata(tx)[[1]])

Transcript names are properties of the elements of the GRangesList. To
extract the transcript names of a single element, extract one element, then
query the GRanges for its values() and subset accordingly.

> ## one transcript
> tx["FBgn0002183"]
> values (tx[["FBgn0002183"]])$tx_name

The commands to extract all transcript names requires either that each
element of the GRangesList be extracted and queried or that the GRangesList
be unlisted (to a GRanges instance) and then queried.

slow: sapply(tx, function(elt) values(elt)$tx_name)

txx <- unlist(tx, use.names=FALSE) # GRanges

txnm <- values (txx)$tx_name

length (txnm)

head (txnm, 4)

advanced: grouped by gene

txnmByGene <- split(txnm, rep(names(tx), elementLengths(tx)))
txnmByGene [1:3]

vV VVVVVVYV

Sequences can be ‘active’ or not; only transcripts or exons from active se-
quences are extracted from the data base.

isActiveSeq(txdb)

nms <- grep("(Het|extra)", names(isActiveSeq(txdb)), value=TRUE)
isActiveSeq(txdb) [nms] <- FALSE

isActiveSeq(txdb)

tx <- transcriptsBy(txdb, "gene")

ex <- transcriptsBy(txdb, "gene")

V V.V Vv \VvyVv

Exercise 7

This exercise illustrates how annotation information can be integrated with the
Rsamtools package. The goal is to use transcript coordinates as a basis for
querying a BAM file. Specifically, we ask about the insert width of paired end
reads mapping to genes consisting of a single exon and transcript. The naive
motivation is that these represent an appropriate null against which to compare
insert widths observed in genes with more complicated structure.

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

a. Use transcriptsBy to extract a GRangesList describing the transcripts
present in each gene. Use elementLengths on this object to identify genes
that consist of exactly one transcript.

b. Similarly, use exonsBy to extract a GRangesList describe the exons present
in each gene. Use elementLengths on this object to identify genes that
consist of exactly one exon.

c. Use the R function intersect to identify the genes that have exactly one
transcript, encoded by exactly one exon.

d. Use the ranges of the single-exon, single-transcript genes to query BAM
files for insert width. This is tricky.

(a) Recall from previous exercises how to list and open BAM files for our
lab.

(b) Remove the lanes that are not paired-end; we cannot determine insert
width from this data.

(c) Create a ScanBamParam object with a which argument that restricts
the query to the regions corresponding to the single-exon, single-
transcript genes.

(d) Apply insertSize to each BAM file.

e. As a final component of this exercise, create an lattice densityplot that
describes insert width.

Solution: Identify the names of the transcripts of genes with exactly one
transcript, and the genes with single exons. ..

transcripts

tx <- transcriptsBy(txdb, "gene")
txlidx <- elementLengths(tx) == 1
tx1lnm <- names (tx) [tx1idx]

exons

ex <- exonsBy(txdb, "gene")
exlidx <- elementLengths(ex) == 1
exlnm <- names (ex) [ex1idx]

vV VVVVVVYV

Find the intersection, i.e., genes with a single transcript and a single exon.

> gnl <- intersect(txlnm, exlnm)
> length(gn1)

Use the ranges of these genes to query the bam files for insert widths. Start by
listing and opening the (paired-end) BAM files.

> if (interactive())
+ bamFiles <- file.choose()
> fls <- list.files(bamFiles, "bam$", full=TRUE)

http://cran.fhcrc.org/web/packages/lattice/index.html

> bam <- open(BamFileList(fls))

> names (bam) <- sub(".bam", "", basename(fls))

> bam2 <- bam[-c(1, 4:5)] # drop single-end files
> snms <- seqnames (seqinfo(bam[[1]]))

Create a ScanBamParam instance where which corresponds to the single-exon,
single-transcript genes.

> whichO <- unlist(ex[gnl], use.names=FALSE)

> which <- keepSeqlevels(whichO, snms) # drop sequences not in bam files
> param <- ScanBamParam(which=which)

> ## hist(logl0(width(which)))

Calculate insert size using insertSize (developed in a previous lab) on each
bam file. The code below uses mclapply, which is like lapply but runs across
multiple cores (mclapply is provided by the multicore package; this package is
not, unfortunately, available on Windows).

> doit <-

+ if (suppressWarnings(require("multicore"))) {
+ mclapply

+ } else lapply

> iwd0 <- doit(as.list(bam2), insertSize, param=param)
> iwd <- lapply(iwd0O, unlist)

Finally, display the distribution of insert sizes by converting the data to a ‘long’
data frame and displaying using the densityplot function from the lattice pack-
age.

> df <- do.call(make.groups, iwd)

> densityplot(~data, group=which, df[df$data < 600,],
+ plot.points=FALSE,

+ auto.key=list (1ines=TRUE, points=FALSE, columns=2),
+ file="single-exon-inserts.pdf")

The result of this operation is presented in Figure 1.

2 Internet resources with Bioconductor

2.1 Biomart

Rich annotation resources are available on the web. Many resources are ac-
cessible in Bioconductor through special purpose packages, e.g., biomaRt for
accessing the Biomart collection of resources, or GEOquery and ArrayExpress
for accessing the corresponding microarray repositories. Flexible programming
tools such as the XML and RCurl packages provide programmatic access to
virtually any internet resource. Secondary internet resources are extensive and

http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://biomart.org
http://bioconductor.org/packages/release/bioc/html/GEOquery.html
http://bioconductor.org/packages/release/bioc/html/ArrayExpress.html
http://cran.fhcrc.org/web/packages/XML/index.html
http://cran.fhcrc.org/web/packages/RCurl/index.html

treated2 —— untreated3 ——
treated3 —— untreated4 ——

1 1 1 1 1 1 1

0.03 L

0.02 -

Density

0.01 -

0.00 L

o

100 200 300 400 500 600
data

Figure 1: Insert widths in single-exon, single-transcript genes.

‘current’, but are often transient or surprisingly intermittent in their availabil-
ity, and frequently lack version information required for reproducible research.
This can make internet resources frustrating to work with during analysis.

This section of the lab uses the biomaRt package to retrieve information
about DNA sequences of particular genic locations, and compares the results
with those accessible using Bioconductor annotation resources.

Exercise 8
The biomaRt package provides a very nice way to query ‘marts’ of data sets
that conform to particular standards.

a. ‘Discover’ the marts (collections of data sets) available at the default
Biomart location using the biomaRt function listMarts. Select the en-
sembl mart with the useMart function.

b. FEach mart has several data sets associated with it. List available data
sets in the ensembl mart using the listDatasets function. Select the
"dmelanogaster_gene_ensembl" data set using the useDataset function.

c. Data sets have attributes that one can retrieve, and filters that restrict
the records that are returned. List the attributes and filters associated
with the data set you are using with the listAttributes and listFilters
functions.

http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html

Solution: Load the biomaRt package and discover available marts; select
the ensembl mart.

> library(biomaRt)
> head(listMarts(), 4)
> mart <- useMart("ensembl")

Select the data set with Drosophila Ensembl genes.

> dsets <- listDatasets (mart)
> head(dsets, 4)
> dset <- useDataset ("dmelanogaster_gene_ensembl", mart)

Query the data set for the attributes and filters it supports.

> head(listAttributes(dset))
> head(listFilters(dset), 10)

Exercise 9
This exercise uses the biomaRt package to retrieve GC content of the four genes
(<<symid>>) from Figure 3 of [1].

Begin by retrieving Biomart information about GC content of the genes we
are interested in.

a. Select attributes that return the Ensembl gene and transcript identifiers
and the Entrez gene identifier.

b. Use entrezgene as the filter argument, and the Entrez gene identifiers
<<egid>> as the values argument.

c. Retrieve the relevant annotation using getBM.
Next. ..

a. Refine the query to return Ensembl gene identifiers, chromosome name,
start and end position, and strand information. Importantly, also return
GC content.

b. Represent the results as a GRanges instance.
Finally. ..

a. Load the BSgenome package containing the D. melanogaster genome,
BSgenome.Dmelanogaster. UCSC.dm3.

b. Use the getSeq function to retrieve sequences corresponding to the biomaRt
query.

c. Use alphabetFrequency along with rowSums to calculate the GC content in
the sequences returned by getSeq. How does this compare with the GC
content retrieved using biomaRt?

http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.Dmelanogaster.UCSC.dm3.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html

Solution: Set the attributes and filters, and retrieve the annotations.

> attrs <- c("ensembl_gene_id", "ensembl_transcript_id", "entrezgene")
> filters <- "entrezgene"

> values <- c("32007", "32008", "38248", "39611")

> (anno <- getBM(attrs, filters, values, mart=dset))

> ## compare with unlist(tx[ensid])

Refine the query to return genes, their genomic location, and GC content.

> attrs <- c("ensembl_gene_id", "chromosome_name",
+ "start_position", "end_position",

+ "strand", "percentage_gc_content")

> (anno <- getBM(attrs, filters, values, mart=dset))

Represent the results as a GRanges instance.

> (gr <- with(anno,
GRanges (sprintf ("chr),s", chromosome_name),
IRanges (start_position, end_position,
names=ensembl_gene_id),
strand=ifelse(strand==-1, "-", "+"))))

+ + + +

Extract the relevant sequence from the relevant BSgenome package, and calcu-
late GC content.

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> (seq <- getSeq(Dmelanogaster, gr))

> alf <- alphabetFrequency(seq, baseOnly=TRUE)
> rowSums (alf[,c("G", "C")]) / rowSums(alf)

As an advanced exercise: from the BAM files, what is the GC content of reads
aligning to these regions?

References

[1] A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit,
S. E. Brenner, and B. R. Graveley. Conservation of an RNA regulatory map
between Drosophila and mammals. Genome Res., 21:193-202, Feb 2011.

A Appendix

10

http://bioconductor.org/packages/release/bioc/html/BSgenome.html

	Bioconductor resources
	Genes
	Transcripts

	Internet resources with Bioconductor
	Biomart

	Appendix

