
An introduction to R and Bioconductor

Martin Morgan∗

June 20-23, 2011

1 Introduction

R is an open-source statistical programming language. It is used to manipu-
late data, to perform statistical analyses, and to present graphical and other
results. R consists of a core language, additional ‘packages’ distributed with the
R language, and a very large number of packages contributed by the broader
community. Packages add specific functionality to an R installation. R has be-
come the primary language of academic statistical analyses, and is widely used
in diverse areas of research, government, and industry.

R has several unique features. It has a surprisingly ‘old school’ interface:
users type commands into a console; scripts in plain text represent work flows;
tools other than R are used for editing and other tasks. R is a flexible pro-
gramming language, so while one person might use functions provided by R to
accomplish advanced analytic tasks, another might implement their own func-
tions for novel data. As a programming language, R adopts syntax and grammar
that differ from many other languages: objects in R are ‘vectors’, and functions
are ‘vectorized’ to operate on all elements of the object; R objects have ‘copy
on change’ and ‘pass by value’ semantics, reducing unexpected consequences for
users at the expense of less efficient memory use; common paradigms in other
languages, such as the ‘for’ loop, are encountered much less commonly in R.
Many authors contribute to R so there can be a frustrating inconsistency of
documentation and interface. R grew up in the academic community, so au-
thors have not shied away from trying new approaches. Of course statistical
analyses, especially exploratory, are very well-developed.

Bioconductor is a collection of R packages for the analysis and comprehen-
sion of high-throughput genomic data. Bioconductor started more than 10 years
ago. It gained credibility for its statistically rigorous approach to microarray
pre-preprocessing and designed experiments, and integrative and reproducible
approaches to bioinformatic tasks. There are now more than 460 Bioconductor
packages for expression and other microarrays, sequence analysis, flow cytome-
tery, imaging, and other domains.

∗mtmorgan@fhcrc.org

1

mailto:mtmorgan@fhcrc.org

2 Statistical programming

Many academic and commercial software products are available; why would one
use R and Bioconductor? One answer is to ask what demands high-throughput
genomic data place on the effectiveness of computational biology software.

2.1 Effective computational biology software

High-throughput questions make use of large data sets. This applies both to the
primary data (microarray expression values, sequenced reads, etc.) and also to
the annotations on those data (coordinates of genes and features such as exons
or regulatory regions; participation in biological pathways, etc.). Large data sets
place demands on our tools that preclude some standard approaches, such as
spread sheets. Likewise intricate relationships between data and annotation, and
the diversity of research questions, require flexibility typical of a programming
language rather than a narrowly-enabled graphical user interface.

Analysis of high-throughput data is necessarily statistical. The volume of
data requires that it be appropriately summarized before any sort of compre-
hension is possible. The data are produced by advanced technologies, and these
introduce artifacts (e.g., probe-specific bias in microarrays; sequence or base
calling bias in RNA-seq experiments) that need to be accommodated to avoid
incorrect or inefficient inference. Data sets typically derive from designed ex-
periments, requiring a statistical approach both to account for the design, and
to correctly address the large number of observed values (e.g., gene expression
or sequence tag counts) and small number of samples accessible in typical ex-
periments.

Research needs to be reproducible. Reproducibility is both an ideal of the
scientific method, and a pragmatic requirement. The latter comes from the
long-term and multi-participant nature of contemporary science. An analysis
will be performed for the initial experiment, revisited during manuscript prepa-
ration, and revisited during reviews or in determining next steps. Likewise,
analyses typically involve a team of individuals with diverse domains of exper-
tise. Effective collaborations result when it is easy to reproduce, perhaps with
minor modifications, an existing result, and when sophisticated statistical or
bioinformatic analyses can be effectively conveyed to other group members.

Science moves very quickly. This is driven by the novel questions that are the
hallmark of discovery, and by technological innovation and accessibility. This
places significant burdens on software, which must also move quickly. Effective
software cannot be too polished, because that requires that the correct analyses
are ‘known’ and that significant resources of time and money have been invested
in developing the software; this implies software that is tracking the trailing
edge of innovation. On the other hand, leading-edge software cannot be too
idiosyncratic; it must be usable by a wider audience than the creator of the
software, and fit in with other software relevant to the analysis.

Effective software must be accessible. Affordability is one aspect of acces-
sibility. Another is transparent implementation, where the novel software is

2

sufficiently documented and source code accessible enough for the assumptions,
approaches, practical implementation decisions, and inevitable coding errors to
be assessed by other skilled practitioners. A final aspect of affordability is that
the software is actually usable. This is achieved through adequate documenta-
tion, support forums, and training opportunities.

2.2 Bioconductor as effective computational biology soft-
ware

What features of R and Bioconductor contribute to its effectiveness as a software
tool?

Bioconductor is well suited to handle extensive data and annotation. Bio-
conductor ‘classes’ represent high-throughput data and their annotation in an
integrated way. Bioconductor methods use advanced programming techniques
or R resources (such as transparent data base or network access) to minimize
memory requirements and integrate with diverse resources. Classes and meth-
ods coordinate complicated data sets with extensive annotation. Nonetheless,
the basic model for object manipulation in R involves vectorized in-memory
representations. For this reason, particular programming paradigms (e.g., block
processing of data streams; explicit parallelism) or hardware resources (e.g.,
large-memory computers) are sometimes required when dealing with extensive
data.

R is ideally suited to addressing the statistical challenges of high-throughput
data. Three examples include the development of the ‘RMA’ and other normal-
ization algorithm for microarray pre-processing, use of moderated t-statistics for
assessing microarray differential expression, and development of approaches to
estimating dispersion read counts necessary for appropriate analysis of RNAseq
designed experiments.

Many of the ‘old school’ aspects of R and Bioconductor facilitate repro-
ducible research. An analysis is often represented as a text-based script. Repro-
ducing the analysis involves re-running the script; adjusting how the analysis is
performed involves simple text-editing tasks. Beyond this, R has the notion of
a ‘vignette’, which represents an analysis as a LATEX document with embedded
R commands. The R commands are evaluated when the document is built, thus
reproducing the analysis. The use of LATEX means that the symbolic manipula-
tions in the script are augmented with textual explanations and justifications for
the approach taken; these include graphical and tabular summaries at appropri-
ate places in the analysis. R includes facilities for reporting the exact version of
R and associated packages used in an analysis so that, if needed, discrepancies
between software versions can be tracked down and their importance evaluated.
While users often think of R packages as providing new functionality, they are
also used to encapsulate a single analysis. The package can contain data sets,
vignette(s) describing the analysis, R functions that might have been written,
scripts for key data processing stages, and documentation (via standard R help
mechanisms) of what the functions, data, and packages are about.

3

The Bioconductor project adopts practices that facilitate reproducibility.
Versions of R and Bioconductor are released twice each year. Each Bioconductor
release is the result of development, in a separate branch, during the previous
six months. The release is built daily against the corresponding version of R on
Linux, Mac, and Windows platforms, with an extensive suite of tests performed.
The biocLite function ensures that each release of R uses the corresponding
Bioconductor packages. The user thus has access to stable and tested package
versions. R and Bioconductor are effective tools for reproducible research.

R and Bioconductor exist on the leading portion of the software life cycle.
Contributors are primarily from academic institutions, and are directly involved
in leading-edge research activities. New developments are made available in a
familiar format, i.e., the R language, packaging, and build systems. The rich set
of facilities in R (e.g., for advanced statistical analysis or visualization) and the
extensive resources in Bioconductor (e.g., for annotation using third-party data
such as Biomart or the UCSC genome browser tracks) mean that innovations can
be directly incorporated into existing work flows. The ‘development’ branches
of R and Bioconductor provide an environment where contributors can explore
new approaches without alienating their user base.

R and Bioconductor also fair well in terms of accessibility. The software
is freely available. The source code is easily and fully accessible for critical
evaluation. The R packaging and check system requires that all functions are
documented. Bioconductor requires that each package contain vignettes to illus-
trate the use of the software. There are very active R and Bioconductor mailing
lists for immediate support, and regular training and conference activities for
professional development.

3 R data types and functions

Opening an R session results in a prompt. The user types instructions at the
prompt. Here’s an example:

> ## assign values 5, 4, 3, 2, 1 to variable 'x'
> x <- c(5, 4, 3, 2, 1)

> x

[1] 5 4 3 2 1

The first line starts with a # to represent a comment; the line is ignored
by R. The next line creates a variable x. The variable is assigned (using <-,
we could have used = almost interchangably) a value. The value assigned is
the result of a call to the c function. That it is a function call is indicated by
the symbol named followed by parentheses, c(). The c function takes zero or
more arguments, and returns a vector. The vector is the value assigned to x.
R responds to this line with a new prompt, ready for the next input. The next
line asks R to display the value of the variable x. R responds by printing [1] to

4

indicate that the subsequent number is the first element of the vector. It then
prints the value of x.

R has many features to aid common operations. Entering sequences is a very
common operation, and expressions of the form 2:4 create a sequence from 2

to 4. Subsetting one vector by another is enabled with [. Here we create a
sequence from 2 to 4, and use the sequence as an index to select the second,
third, and fourth elements of x

> x[2:4]

[1] 4 3 2

R functions operate on variables. Functions are usually vectorized, acting
on all elements of their argument and obviating the need for explicit iteration.
Functions can generate warnings when performing suspect operations, or errors
if evaluation cannot proceed; try log(0) or log(-1).

> log(x)

[1] 1.6094379 1.3862944 1.0986123 0.6931472 0.0000000

3.1 Essential data types

R has a number of standard data types, to represent integer, numeric (floating
point), complex, character, logical (boolean), and raw (byte) data. It is
possible to convert between data types, and to discover the type or mode of a
variable.

> c(1.1, 1.2, 1.3) # numeric

[1] 1.1 1.2 1.3

> c(FALSE, TRUE, FALSE) # logical

[1] FALSE TRUE FALSE

> c("foo", "bar", "baz") # character, single or double quote ok

[1] "foo" "bar" "baz"

> as.character(x) # convert 'x' to character

[1] "5" "4" "3" "2" "1"

> typeof(x) # the number 5 is numeric, not integer

[1] "double"

> typeof(2L) # append 'L' to force integer

5

[1] "integer"

> typeof(2:4) # ':' produces a sequence of integers

[1] "integer"

R includes data types particularly useful for statistical analysis, including fac-

tor to represent categories and NA (used in any vector) to represent missinng
values.

> sex <- factor(c("Male", "Female", NA), levels=c("Female", "Male"))

> sex

[1] Male Female <NA>

Levels: Female Male

3.2 Lists, data frames, and matricies

All of the vectors mentioned so far are homogenous, consisting of a single type
of element. A list can contain a collection of different types of elements and,
like all vectors, these elements can be named to create a key-value association.

> lst <- list(a=1:3, b=c("foo", "bar"), c=sex)

> lst

$a

[1] 1 2 3

$b

[1] "foo" "bar"

$c

[1] Male Female <NA>

Levels: Female Male

Lists can be subset like other vectors to get another list, or subset with [[to
retrieve the actual list element; as with other vectors, subsetting can use names

> lst[c(3, 1)] # another list

$c

[1] Male Female <NA>

Levels: Female Male

$a

[1] 1 2 3

> lst[["a"]] # the element itself, by name

6

[1] 1 2 3

A data.frame is a list of equal-length vectors, representing a rectangular
data structure not unlike a spread sheet. Each column of the data frame is a
vector, so data types must be homogenous with a column. A data.frame can
be subset by row or column, and columns can be accessed with $ or [[.

> df <- data.frame(age=c(27L, 32L, 19L),

+ sex=factor(c("Male", "Female", "Male")))

> df

age sex

1 27 Male

2 32 Female

3 19 Male

> df[c(1, 3),]

age sex

1 27 Male

3 19 Male

> df[df$age > 20,]

age sex

1 27 Male

2 32 Female

A matrix is also a rectangular data structure, but subject to the constraint
that all elements are the same type. A matrix is created by taking a vector, and
specifying the number of rows or columns the vector is to represent. On subset-
ting, R coerces a single column data.frame or single row or column matrix to
a vector if possible; use drop=FALSE to stop this behavior.

> m <- matrix(1:12, nrow=3)

> m

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> m[c(1, 3), c(2, 4)]

[,1] [,2]

[1,] 4 10

[2,] 6 12

> m[, 3]

7

[1] 7 8 9

> m[, 3, drop=FALSE]

[,1]

[1,] 7

[2,] 8

[3,] 9

An array is a data structure for representing homogenous, rectangular data in
higher dimensions.

3.3 S3 and S4 classes

More complicated data structures are represented using the ‘S3’ or ‘S4’ object
system. Objects are often created by functions (lm, below), with parts of the
object extracted or assigned using accessor functions. The following generates
1000 random normal deviates as x, and uses these to create another 1000 de-
viates y that are linearly related to x but with some error. We fit a linear
regression using a ‘formula’ to describe the relationship between variables, sum-
marize the results in a familiar ANOVA table, and access fit (an S3 object) for
the residuals of the regression, using these as input first to the var (variance) and
then sqrt (square-root) functions. Objects can be interogated for their class.

> x <- rnorm(1000, sd=1)

> y <- x + rnorm(1000, sd=.5)

> fit <- lm(y ~ x) # formula describes linear regression

> fit # an 'S3' object

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

-0.01908 0.97658

> anova(fit)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 987.29 987.29 4074.1 < 2.2e-16 ***

Residuals 998 241.85 0.24

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

> sqrt(var(resid(fit))) # residuals accessor and subsequent transforms

8

[1] 0.4920244

> class(fit)

[1] "lm"

Find help on functions, e.g., the return value of fit, using the R help system.

> ?data.frame

> ?rnorm

> ?lm

> ?anova # a generic function

> ?anova.lm # an S3 method, specialized for 'lm' objects

Many Bioconductor packages implement S4 objects to represent data. S3 and S4
systems are quite different from a programmer’s perspective, but fairly similar
from a user’s perspective: both systems encapsulate complicated data struc-
tures, and allow for methods specialized to different data types.

3.4 Functions

R functions accept arguments, and return values. Arguments can be required
or optional. Some functions may take variable numbers of arguments, e.g., the
columns in a data.frame

> y <- 5:1

> log(y)

[1] 1.6094379 1.3862944 1.0986123 0.6931472 0.0000000

> args(log) # arguments 'x' and 'base'; see ?log

function (x, base = exp(1))

NULL

> log(y, base=2) # 'base' is optional, with default value

[1] 2.321928 2.000000 1.584963 1.000000 0.000000

> try(log()) # 'x' required; 'try' continues even on error

> args(data.frame) # ... represents variable number of arguments

function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,

stringsAsFactors = default.stringsAsFactors())

NULL

Arguments can be matched by position or by name. If an argument appears
after ..., it must be named.

> log(base=2, y) # match argument 'base' by name, 'x' by position

9

[1] 2.321928 2.000000 1.584963 1.000000 0.000000

A generic may have fewer arguments than a method, as with the S3 function
anova and its method anova.glm.

> args(anova)

function (object, ...)

NULL

> args(anova.glm)

function (object, ..., dispersion = NULL, test = NULL)

NULL

The source code of a function is printed if the function is invoked without
parentheses. Here we discover that the function head (which returns the first 6
elements of anything) is an S3 generic (indicated by UseMethod) and has several
methods; use getAnywhere to retrieve non-visible function definitions. We use
head to look at the first six lines of the head method specialized for matrix

objects.

> head

function (x, ...)

UseMethod("head")

<environment: namespace:utils>

> methods(head)

[1] head.data.frame* head.default* head.ftable* head.function*

[5] head.matrix head.table*

Non-visible functions are asterisked

> head(head.matrix)

1 function (x, n = 6L, ...)

2 {

3 stopifnot(length(n) == 1L)

4 n <- if (n < 0L)

5 max(nrow(x) + n, 0L)

6 else min(n, nrow(x))

4 Packages

Packages provide functionality beyond that available in base R. There are over
3000 packages in CRAN (comprehensive R archive network) and more than 460

10

Barley Yield (bushels/acre)

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

20 30 40 50 60

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Grand Rapids

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Duluth
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

University Farm

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Morris
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Crookston

20 30 40 50 60

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Waseca

1932
1931

●

●

Figure 1: Variety yield conditional on site and grouped by year, for the barley

data set.

Bioconductor packages. Packages are contributed by diverse members of the
community; they vary in quality (many are excellent) and sometimes contain
idiosyncratic aspects to their implementation.

The lattice package is distributed with R but not loaded by default. It
provides a very expressive way to visualize data. The following example plots
yield for a number of barley varieties, conditioned on site and grouped by year.
Figure 1 is read from the lower left corner. Note the common scales, efficient
use of space, and not-too-pleasing default color palette. The Waseca sample
appears to be mis-labelled for ‘year’, an apparent error in the original data.
Find out about the built-in data set used in this example with ?barley.

> library(lattice)

> dotplot(variety ~ yield | site, data = barley, groups = year,

+ key = simpleKey(levels(barley$year), space = "right"),

+ xlab = "Barley Yield (bushels/acre) ",

+ aspect=0.5, layout = c(2,3), ylab=NULL)

New packages can be added to an R installation using install.packages.
A package is installed only once per R installation, but needs to be loaded (with

11

library) in each session in which it is used. Loaded packages are displayed
with search. The path returned by search represents the order in which the
global environment (where commands entered at the prompt are evaluated)
and attached packages are searched for symbols; it is possible for a package
earlier in the search path to mask symbols later in the search path; these can
be disambiguated using ::.

> search()

[1] ".GlobalEnv" "package:lattice" "package:stats"

[4] "package:graphics" "package:grDevices" "package:utils"

[7] "package:datasets" "package:methods" "Autoloads"

[10] "package:base"

> base::log(1:3)

[1] 0.0000000 0.6931472 1.0986123

4.1 Bioconductor

Bioconductor enhances R through packages for microarray, sequence, annota-
tion, flow cytometry, imaging, and other high-throughput genomic analyses.
Packages are contributed by academic and other groups from around the world;
a core group at the Fred Hutchinson Cancer Research Center is funded by the US
National Human Genome Research Institute to provide project infrastructure.

Classical Bioconductor work flows involve data input, pre-processing, quality
assessment (before or after pre-processing), exploratory and downstream anal-
ysis. Downstream steps depends on the research question but might involve
analysis of designed experiments (e.g., differential expression between groups),
machine learning (clustering and classification), or per-sample processing (e.g.,
SNP calling, copy number estimation). Results are then subject to gene or path-
way annotation and perhaps higher-level analysis (e.g., gene set enrichment). A
more concrete work flow example illustrates use of Bioconductor packages for
expression microarrays; it serves as an established model for other, nascent,
technologies.

Input and pre-processing might begin with a vendor-specific package such as
affy , lumi, or limma (for two-color arrays). The oligo package is useful for high
density arrays, GEOquery and ArrayExpress provide facilities for retrieving
data sets from the GEO and ArrayExpress repositories.

Typical pre-processing steps are background correction to address imaging
and other technology-specific artifacts, normalization to standardize expres-
sion signals from different samples, and summarization of signals from mul-
tiple probes of a single feature (e.g., ‘gene’, used as a synonym for summa-
rized expression values below). Packages used for input provide mechanisms
for technology-specific pre-processing; vsn (variance stabilizing normalization,
using a generalized log transform) is an example of a package that implements
normalization methods meant for use on several different platforms. A common

12

http://bioconductor.org/packages/release/bioc/html/affy.html
http://bioconductor.org/packages/release/bioc/html/lumi.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/oligo.html
http://bioconductor.org/packages/release/bioc/html/GEOquery.html
http://bioconductor.org/packages/release/bioc/html/ArrayExpress.html
http://www.ncbi.nlm.nih.gov/geo
http://www.ebi.ac.uk/microarray-as
http://bioconductor.org/packages/release/bioc/html/vsn.html

output from pre-processing is an S4 ExpressionSet object. This object coordi-
nates expression values, sample metadata (e.g., sample X belongs to treatment
group Y, and was processed on day Z), and gene annotation in a way that re-
duces book-keeping and other common errors associated with managing large
data with complicated relationships.

The arrayQualityMetrics package produces a comprehensive HTML sum-
mary of expression microarray quality, based either on raw or pre-processed data
from a variety of platforms. Exploratory analysis of pre-processed data sets of-
ten involve a combination of Bioconductor packages and standard R tools. One
might use the genefilter package to remove unannotated genes and to identify
genes that are highly variable across all samples; genes passing filter form a
reduced data set for exploratory or perhaps downstream analysis. Exploratory
analysis often involves standard R functions, e.g., heatmap to cluster samples
and look for association with un-intended covariates such as batch processing
date.

The next work flow step depends on research question, experimental design,
and project-specific objectives. The limma package provides an excellent illus-
tration of the opportunities provided by Bioconductor for analysis of designed
experiments. A typical starting point is the ExpressionSet of pre-processed data,
and a (statistical) model matrix describing experimental design. The functions
lmFit, eBayes , and topTable are then used to fit the linear model implied by
the design matrix to each gene, to assess differential expression, and to sum-
marize results in a convenient data.frame. This step requires that the user is
comfortable with more-than-elementary statistical concepts (e.g., formulating a
model matrix and contrasts appropriate for their experiment) and is willing to
accept the nuanced statistical reasoning (e.g., about pooled variance estimates
and priors) that limma implements. In exchange, one gains great flexibility in
the type of experiment that can be analyzed, and access to an approach that
considerably improves on simple per-gene analyses. The limma vignette is an
excellent resource.

Bioconductor annotation facilities help place results in context. Annota-
tionDbi is at the base of a large suite of packages that provide gene-level map-
pings between different identifiers. For instance, org.Hs.eg.db is an organism-
specific annotation package for H. sapiens. It uses Entrez gene identifers (the
eg in the package name) as a key, from which chromosomal location, gene ontol-
ogy or KEGG pathway, and other information can be obtained. The BSgenome
packages povides whole-genome sequences (see BSgenome::available.genomes()).
The biomaRt package allows users to query the rich data resources of Biomart;
rtracklayer (for the UCSC genome browser) and GenomicFeatures (for UCSC
and Biomart) provide access to track and other annotation resources. Several
packages (e.g., Category , GOstats, topGO, GSEAlm, limma, GSEABase) pro-
vide gene set enrichment style analyses.

13

http://bioconductor.org/packages/release/bioc/html/arrayQualityMetrics.html
http://bioconductor.org/packages/release/bioc/html/genefilter.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/bioc/html/org.Hs.eg.db.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://biomart.org
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://genome.ucsc.edu
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/Category.html
http://bioconductor.org/packages/release/bioc/html/GOstats.html
http://bioconductor.org/packages/release/bioc/html/topGO.html
http://bioconductor.org/packages/release/bioc/html/GSEAlm.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/GSEABase.html

5 Summary

High-throughput genomic data analysis requires software tools that are capable
of dealing with extensive and inter-related data sets. The software must neces-
sarily be statistical to accommodate large data volume, technological artifacts,
and experimental design. Scientific researchers work on long term projects in
collaborative groups, and require reproducible results and easily modified anal-
yses. Software on the leading edge will not be blemish-free, but can fit in to
existing work flows, be well-documented, and easily distributed to diverse users.
R and Bioconductor have many attributes that make them very suitable for
genomic data analysis.

R is a statistical programming language. Its vectorized data types can be
incorporated into data structures and objects to represent complicated, inter-
related data sets or results. The R packaging system means that the language is
extensible by a wide community; it is the tool of choice for academic and other
leading edge research groups.

The Bioconductor project builds on R’s foundations to provide a large suite
of packages for high-throughput analysis. These packages are combined into
work flows. The microarray differential expression work flow summarized above
provides a template relevant to other domains, highlights many key packages
for microarray analysis, and illustrates the sophisticated statistical approaches
and rewards made available to Bioconductor users.

14

	Introduction
	Statistical programming
	Effective computational biology software
	Bioconductor as effective computational biology software

	R data types and functions
	Essential data types
	Lists, data frames, and matricies
	S3 and S4 classes
	Functions

	Packages
	Bioconductor

	Summary

