R / Bioconductor for Everyone

Martin Morgan1
Fred Hutchinson Cancer Research Center
Seattle, WA

24 July 2012

1mtmorgan@fhcrc.org
Abstract

This lab provides an introduction to \textit{R / Bioconductor} for high-throughput sequence analysis. It is designed for those who have some but not a lot of familiarity with \textit{R} and Bioconductor. The first part of the lab will focus on \textit{R} data types, functions, classes, methods, the package and help systems, and the Bioconductor web site. The second part of the lab takes a quick tour of essential packages, classes, and methods for sequence analysis. We will make brief stops at \textit{GenomicRanges, Biostrings, GenomicFeatures, ShortRead, Rsamtools, rtracklayer, AnnotationDbi}, and other packages of interest to participants.
Outline

R and Bioconductor

Package tour
R and Bioconductor

R – http://r-project.org
- Open-source, statistical programming language; widely used in academia, finance, pharma, ...
- Core language, ‘base’ and > 3000 contributed packages
- Interactive sessions, scripts, packages

- Analysis and comprehension of high-throughput genomic data
- Themes: rigorous statistical analysis; reproducible work flows; integrative analysis
- > 10 years old, > 550 packages
Basic data types

- Vectors of *logical*, *integer*, *numeric*, *complex*, *character*, or *raw* types
- Statistical concepts such as *factor*, NA
- More complicated data structures: *data.frame*, *matrix*, *list*
- Object-oriented classes – ‘S3’ and ‘S4’ systems

```r
> df <- data.frame(
+   age = c(27, 32, 19),
+   sex = factor(c("Male", "Female", NA)))
> df

   age sex
1  27  Male
2  32 Female
3  19 <NA>
```
Functions

- Typically, act on *vectors*
- Required and / or optional arguments
- Matching by name, then position

```r
> y <- 5:1  # vector: 5, 4, 3, 2, 1
> log(y)   # log of each element, 'vectorized'
[1] 1.6094379 1.3862944 1.0986123 0.6931472 0.0000000
> args(log) # discovery; argument 'base' has default function (x, base = exp(1))
NULL
> log(base=2, y) # match by name, then position
[1] 2.321928 2.000000 1.584963 1.000000 0.000000
```
Classes and Methods

- Coordinate complicated data
- *methods* specialize functions; *accessors*

```r
> x <- rnorm(1000, sd=1); y <- x + rnorm(1000, sd=.5)
> fit <- lm(y ~ x); class(fit)
[1] "lm"
> head(methods(class=class(fit)), 3)
[1] "add1.lm" "alias.lm" "anova.lm"
> anova(fit)
Analysis of Variance Table

Response: y

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>1030.65</td>
<td>1030.65</td>
<td>4003.5</td>
<td>&lt; 2.2e-16 ***</td>
</tr>
<tr>
<td>Residuals</td>
<td>998</td>
<td>256.92</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
S4 Classes and Methods

- S4 is a more formal class system, used extensively in Bioconductor

```r
> library(Biostrings)
> dna <- DNAStringSet(c("AACA", "ATTA"))
> ## showMethods(class=class(dna),
> ## where="package:Biostrings")
> alphabetFrequency(dna, baseOnly=TRUE)

         A   C   G   T other
[1,]  3 1  0  0    0
[2,]  2 0  0  2    0
```
Packages

- Core and contributed; many
- Technical standards imposed, e.g., *man* page for each exposed function, *Bioconductor* vignettes, examples
- Considerable room for author personality, quality variation
- *biocLite* to install a new package, once only
- *library* to attach an installed package

Installation – once only

```r
> source("http://bioconductor.org/biocLite.R")
> biocLite("ShortRead")  # install 'ShortRead' package
> biocLite(character())   # update all installed packages
> library(ShortRead)      # attach to current session
```
Help

> help.start()
> ?data.frame
> ?anova
> ?anova.lm # anova generic, method for class lm
> class?DNAStringSet
> method?"alphabetFrequency,DNAStringSet"
> vignette("GenomicRangesIntroduction", "GenomicRanges")
> help(package="Biostrings")
> RShowDoc("R-intro")
Useful functions

dir, read.table, scan List files; input data.
c, factor, data.frame, matrix Create vectors, etc.
summary, table, xtabs Summarize or cross-tabulate data.
t.test, lm, anova Compare two or several groups.
dist, hclust Cluster data.
plot Plot data.
ls, library List objects; attach packages.
lapply, sapply, mapply Apply function to elements of lists.
match, %in% find elements of one vector in another.
split, cut Split or cut vectors.
strsplit, grep, sub Operate on character vectors.
install.packages Install a package from an on-line repository.
traceback, debug, browser Help debug errors.
Outline

R and Bioconductor

Package tour
Reads

Data Short reads and their qualities
Tasks Input, quality assessment, summary, trimming, . . .
Packages ShortRead, Biostrings
▶ qa, report, alphabetFrequency, alphabetByCycle, consensusMatrix.
▶ trimLRPatterns, matchPDict, . . .
Sequences

Data Whole-genome sequences

Tasks View sequences, match position weight matrices, match patterns

Packages Biostrings, BSgenome

Functions
- available.genomes
- Hsapiens["chr3"], getSeq, mask
- matchPWM, vcountPattern, ...
- forgeBSgenomeDataPkg
Alignments

Data BAM files of aligned reads

Tasks Input, BAM file manipulation, pileups

Packages *Rsamtools* (also: *GenomicRanges*)

Functions
- BamFile, BamFileList
- scanBam, ScanBamParam (select a subset of the BAM file)
- asBam, sortBam, indexBam, mergeBam, filterBam
- applyPileups
Ranges

Data Genomic coordinates to represent data (e.g., aligned reads) or annotation (e.g., gene models).

Tasks Input, counting, coverage, manipulation, ...

Packages GenomicRanges

Functions
 - readGappedAlignments,
 readGappedAlignmentPairs
 - findOverlaps, countOverlaps
 - Many range manipulating operations, e.g., narrow, flank, shift, intersect
Features

Data Genomic coordinates

Tasks Group exons by transcript or gene; discover transcript / gene identifier mappings

Packages *GenomicFeatures* and *TxDb.* packages (also: *rtracklayer*)

Functions
- exonsBy, cdsBy, transcriptsBy
- select (see Annotations, below)
- makeTranscriptDb*
Variants

Data VCF (Variant Call Format) files

Tasks Input, summary, coding consequences

Packages VariantAnnotation

Functions ▶ readVcf, locateVariants, predictCoding
 ▶ Also: SIFT, PolyPhen data bases
Annotations

Data Gene symbols or other identifiers

Tasks Discover annotations associated with genes or symbols

Packages AnnotationDbi (org.*, GO.db, ...), biomaRt

Functions
- cols, keytype, keys, select, merge
- listMarts, listDatasets, listAttributes, listFilters, getBM
Import / export

Data Common text-based formats, gff, wig, bed; UCSC tracks

Tasks Import and export

Packages *rtracklayer*

Functions
- import, export
- browserSession
RNA-seq

Differential representation

Data Counts of reads per gene across samples in designed experiments

Tasks Identify differentially expressed genes or exons

Packages *edgeR*, *DESeq*, *DEXSeq*, *goseq*

Functions ▶ ...

Transcript characterization

Data Aligned reads

Tasks Explore novel transcripts

Packages *GenomicRanges* (devel)

Functions ▶ `findSpliceOverlaps`
And...

Data representation: \textit{IRanges, GenomicRanges, GenomicFeatures, Biostrings, BSgenome, girafe}. Input / output: \textit{ShortRead (fastq), Rsamtools (bam), rtracklayer (gff, wig, bed), VariantAnnotation (vcf), R453Plus1Toolbox (454)}. Annotation: \textit{GenomicFeatures, ChIPpeakAnno, VariantAnnotation}. Alignment: \textit{Rsubread, Biostrings}. Visualization: \textit{ggbio, Gviz}. Quality assessment: \textit{qrqc, seqbias, ReQON, htSeqTools, TEQC, Rolexa, ShortRead}. RNA-seq: \textit{BitSeq, cqn, cummeRbund, DESeq, DEXSeq, EDASEq, edgeR, gage, goseq, iASEq, tweeDEseq}. ChIP-seq, etc.: \textit{BayesPeak, baySeq, ChIPpeakAnno, chipseq, ChIPseqR, ChIPsim, CSAR, DiffBind, MEDIPS, mosaics, NarrowPeaks, nucleR, PICS, PING, REDseq, Repitools, TSSi}. Motifs: \textit{BCRANK, cosmo, cosmoGUI, MotIV, seqLogo, rGADEM}. 3C, etc.: \textit{HiTC, r3Cseq}. Copy number: \textit{cn.mops, CNAnorm, exomeCopy, seqmentSeq}. Microbiome: \textit{phyloseq, DirichletMultinomial, clstutils, manta, mcaGUI}. Work flows: \textit{ArrayExpressHTS, Genominator, easyRNASEq, oneChannelGUI, rnaSeqMap}. Database: \textit{SRAdb}.
More than 550 packages in *Bioconductor*

BiocViews to help navigate
Resources

- Web site: http://bioconductor.org
- Mailing lists:
 http://bioconductor.org/help/mailing-list
- Packages and their vignettes:
 http://bioconductor.org/packages/release
- Course and conference material:
 http://bioconductor.org/help/course-materials
- Introduction to R – RShowDoc('R-intro')