R Basics

Laurent Gatto
lg390@cam.ac.uk

Computational Statistics for Genome Biology
2nd July 2012
Plan

Introduction

Data types and structures
 Basic data types
 Higher order objects

Manipulating data
 Subsetting

Useful functions

Plotting

Programming

Packages
Plan

Introduction

Data types and structures
 * Basic data types
 * Higher order objects

Manipulating data
 * Subsetting

Useful functions

Plotting

Programming

Packages
Hello world

> x <- 1 ## a variable
> x

[1] 1

> x = 2 ## overwrite the value x
> x

[1] 2

> y <- length(x) ## calling a function
> y

[1] 1
Getting help

- Just ask!
- `help.start()` and the HTML help button in the Windows GUI.
- `help` and `?`: `help("data.frame")` or `?help`.
- `help.search`, `apropos`
- Online manuals and mailing lists

- Local R user groups
> ls()

[1] "txt" "x" "y"

> rm(y)
> ls()

[1] "txt" "x"
Plan

Introduction

Data types and structures
 Basic data types
 Higher order objects

Manipulating data
 Subsetting

Useful functions

Plotting

Programming

Packages
> c(1,3,9,-1)

[1] 1 3 9 -1

A vector contains an indexed set of values

- index starts at 1;
- all items are of the same storage mode;
- one of logical, numeric, complex or character,

numeric can further be broken into integer, single and double types (only important when passing these to C or Fortran code, though).
> mode(1)
[1] "numeric"

> typeof(1)
[1] "double"

> mode(1L)
[1] "numeric"

> typeof(1L)
[1] "integer"
> mode("1")
[1] "character"

> typeof("1")
[1] "character"

> mode(TRUE)
[1] "logical"

> typeof(FALSE)
[1] "logical"

> ## as we are talking about booleans...
> TRUE & TRUE
[1] TRUE

> TRUE | FALSE
[1] TRUE
The different modes an types can be retrieved and coerced with the is.* and as.* functions.

```r
> x <- 1
> typeof(x)

[1] "double"

> y <- as.integer(x)
> typeof(y)

[1] "integer"

> is.integer(y)

[1] TRUE
```
Special values

> NULL; NA; NaN; Inf; -Inf
> is.null(); is.na(); is.infinite()
All these are objects with a certain class.

```r
> class(x)
[1] "numeric"

> class("a character")
[1] "character"
```
Creating vectors with functions

> `vector(mode = "character", length = 3)`

 [1] "" "" ""

> `vector(mode = "numeric", length = 4)`

 [1] 0 0 0 0

> `numeric(4)`

 [1] 0 0 0 0
Creating vectors with functions (2)

```r
> x <- c(1, 4, 7, 10) ## concatenate
> x
[1] 1 4 7 10

> y <- 1:5 ## integer sequence
> y
[1] 1 2 3 4 5

> z <- seq(from = 1, to = 10, by = 2)
> z
[1] 1 3 5 7 9
```
Arguments by position or name

> z1 <- seq(from = 1, to = 10, by = 2)
> z2 <- seq(1, 10, 2)
> z1 == z2

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

> all(z1 == z2)

[1] TRUE

> identical(z1, z2)

[1] TRUE
Vectorised arithmetic

> x <- 1:5; y <- 5:1
> x

[1] 1 2 3 4 5

> y

[1] 5 4 3 2 1

> x + y

[1] 6 6 6 6 6

> x^2

[1] 1 4 9 16 25
Matrices

are 2-dimensional vectors

```r
> m <- matrix(1:12, nrow = 4, ncol = 3)
> m

    [,1] [,2] [,3]
[1,]  1  5  9
[2,]  2  6 10
[3,]  3  7 11
[4,]  4  8 12

> dim(m)

[1] 4 3
```
What if I don’t get the data or dimensions right?

```r
> matrix(1:11, 4, 3)

[,1] [,2] [,3]
[1,] 1  5  9
[2,] 2  6 10
[3,] 3  7 11
[4,] 4  8  1

> matrix(1:12, 3, 3)

[,1] [,2] [,3]
[1,] 1  4  7
[2,] 2  5  8
[3,] 3  6  9
```
```r
> x <- 1:12
> class(x)

[1] "integer"

> dim(x)

NULL

> dim(x) <- c(4, 3)
> x

     [,1] [,2] [,3]
[1,]   1   5   9
[2,]   2   6  10
[3,]   3   7  11
[4,]   4   8  12

> class(x)

[1] "matrix"
```
Arrays
are n-dimensional vectors

> array(1:16, dim = c(2, 4, 2))

, , 1

[1,] 1 3 5 7
[2,] 2 4 6 8

, , 2

[1,] 9 11 13 15
[2,] 10 12 14 16
list
is an ordered set of elements that can be arbitrary R objects.

```r
> ll <- list(a = 1:3, c = length)
> ll

$a
[1] 1 2 3

$c
function (x) .Primitive("length")

> ll[[1]]

[1] 1 2 3

> ll$c(ll)

[1] 2
```
data.frame

is a 2-dimensional list.

```r
> dfr <- data.frame(type = c(
+   rep("case", 2),
+   rep("ctrl", 2)),
+   time = rnorm(4))
> dfr

   type     time
1 case  1.1035332
2 case  0.4608016
3 ctrl  1.3241386
4 ctrl  0.5920115
```
> dfr[1,]

 type time
 1 case 1.103533

> dfr[1, "time"]

[1] 1.103533

> dfr$time

[1] 1.1035332 0.4608016 1.3241386 0.5920115
environment

is an unordered collection of objects.

```r
> e <- new.env()
> e[["a"]]<- 1:3
> assign("b", "CSAMA", envir = e)
> ls(e)

[1] "a" "b"

> e$a

[1] 1 2 3

> get("b", e)

[1] "CSAMA"
```
Names

We have seen that function arguments have names, and named our `data.frame` columns. We can also name `matrix/data.frame` columns and rows, dimensions, and vector items.

```r
> x <- c(a = 1, b = 2)
> x

a  b
1  2

> names(x)

[1] "a"  "b"
```
```r
> M <- matrix(c(4, 8, 5, 6, 4, 2, 1, 5, 7), nrow=3)
> dimnames(M) <- list(year =
+   c(2005, 2006, 2007),
+   "mode of transport" =
+   c("plane", "bus", "boat"))
> M

<table>
<thead>
<tr>
<th>mode of transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>2005</td>
</tr>
<tr>
<td>2006</td>
</tr>
<tr>
<td>2007</td>
</tr>
</tbody>
</table>
```
factor
for categorical data

> sample.ExpressionSet$type

 [1] Control Case Control Case Case Control Case
 [10] Control Case Control Case Case Case Control
 [19] Case Case Control Control Control Control Control Case

Levels: Case Control
Higher order objects

When the data to be stored is more complex, special objects are created to store and handle it in a specialised manner. These higher order objects are constructed using the data types we have seen so far as building blocks.

Let’s look at how microarray data is handled in Bioconductor. The eSet model has been re-used for other technologies.
library(Biobase)
data(sample.ExpressionSet)
sample.ExpressionSet

ExpressionSet (storageMode: lockedEnvironment)
assayData: 500 features, 26 samples
 element names: exprs, se.exprs
protocolData: none
phenoData
 sampleNames: A B ... Z (26 total)
 varLabels: sex type score
 varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
Annotation: hgu95av2
> class(sample.ExpressionSet)

[1] "ExpressionSet"
attr(,”package”)
[1] "Biobase"

> slotNames(sample.ExpressionSet)

[1] "experimentData" "assayData" "phenoData"
[4] "featureData" "annotation" "protocolData"
[7] ".__classVersion__"

> class?ExpressionSet
assayData expression values in identical sized matrices.
phenoData sample annotation in AnnotatedDataFrame.
featureData feature annotation in AnnotatedDataFrame.
experimentData description of the experiment as a MIAME object (see ?MIAME for more details).
annotation type of chip as a character.
protocolData scan dates as a character.
The assayData slot

Stored the expression data of the assay.

> exprs(sample.ExpressionSet)[1:4, 1:3]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFFX-MurIL2_at</td>
<td>192.7420</td>
<td>85.75330</td>
<td>176.7570</td>
</tr>
<tr>
<td>AFFX-MurIL10_at</td>
<td>97.1370</td>
<td>126.19600</td>
<td>77.9216</td>
</tr>
<tr>
<td>AFFX-MurIL4_at</td>
<td>45.8192</td>
<td>8.83135</td>
<td>33.0632</td>
</tr>
<tr>
<td>AFFX-MurFAS_at</td>
<td>22.5445</td>
<td>3.60093</td>
<td>14.6883</td>
</tr>
</tbody>
</table>

> dim(exprs(sample.ExpressionSet)) ## or dim(sample.ExpressionSet)

[1] 500 26
The `phenoData` slot

stores the meta data about the samples.

```r
> phenoData(sample.ExpressionSet)
```

An object of class "AnnotatedDataFrame"

 sampleNames: A B ... Z (26 total)
 varLabels: sex type score
 varMetadata: labelDescription
The `featureData` slot stores the meta data about the features.

> `featureData(sample.ExpressionSet)`

An object of class "AnnotatedDataFrame": none
AnnotatedDataFrame consists of a collection of samples and the values of variables measured on those samples. There is also a description of each variable measured. AnnotatedDataFrame associates a data.frame with its metadata.

```r
> head(pData(sample.ExpressionSet))

       sex   type    score
A  Female Control  0.75
B    Male   Case  0.40
C    Male Control  0.73
D    Male   Case  0.42
E  Female   Case  0.93
F    Male Control  0.22
```
Plan

Introduction

Data types and structures
 Basic data types
 Higher order objects

Manipulating data
 Subsetting

Useful functions

Plotting

Programming

Packages
One of the most powerful features of R is its ability to manipulate subsets of vectors and arrays.

As seen, subsetting is done with, [], [,], ..., ...
Subsetting with positive indices

> x <- 1:10
> x[3:7]

[1] 3 4 5 6 7

> x[9:11]

[1] 9 10 NA

> x[0:1]

[1] 1

> x[c(1, 7, 2, NA)]

[1] 1 7 2 NA
Assignments with positive indices

> x[2] <- 20
> x[4:5] <- x[4:5] * 100
> x[1:6]

[1] 1 20 3 400 500 6
Subsetting with negative indices

> x <- 1:10
> x[-c(3:7)]

[1] 1 2 8 9 10
Subsetting with logical predicates

> x[c(TRUE, TRUE, rep(FALSE, 8))]

[1] 1 2

> x > 5

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE

> x[x > 5]

[1] 6 7 8 9 10

> x[c(TRUE, FALSE)] ## recycled

[1] 1 3 5 7 9
Subsetting by names

> x <- c(a = 1, b = 2, c = 2)
> x[c("a", "c")]

 a c
 1 2

> x[c("a", "d")]

 a <NA>
 1 NA
Subsetting matrices

```r
> M <- matrix(1:12, 3)
> M[2,3] <- 0
> M

[1,]  1  4  7 10
[2,]  2  5  0 11
[3,]  3  6  9 12
```
Subsetting matrices (2)

```r
> M < 9
[1,]  TRUE  TRUE  TRUE  TRUE  FALSE
[2,]  TRUE  TRUE  TRUE  TRUE  FALSE
[3,]  TRUE  TRUE  FALSE  FALSE

> M[M < 9] <- -1
> M

[1,]  -1  -1  -1  10
[2,]  -1  -1  -1  11
[3,]  -1  -1  9  12
```
Subsetting lists

>`ll <- list(a = 1:3, b = "CSAMA", c = length)`
>`ll[1]` ## still a list

a

[1] 1 2 3

>`ll[[1]]` ## first element of the list

[1] 1 2 3
Subsetting ExpressionSet instances

It is reasonable to expect that subsetting operations work also for higher order objects.

> sample.ExpressionSet[1:10, 1:2]

ExpressionSet (storageMode: lockedEnvironment)
 assayData: 10 features, 2 samples
 element names: exprs, se.exprs
 protocolData: none
 phenoData
 sampleNames: A B
 varLabels: sex type score
 varMetadata: labelDescription
 featureData: none
 experimentData: use 'experimentData(object)'
 Annotation: hgu95av2
Plan

Introduction

Data types and structures
 Basic data types
 Higher order objects

Manipulating data
 Subsetting

Useful functions

Plotting

Programming

Packages
Data IO

read.table creates a `data.frame` from a spreadsheet file.

write.table writes a `data.frame`/`matrix` to a spreadsheet (tsv, csv).

save writes an binary representation of R objects to a file (cross-platform).

load load a binary R file from disk.

Specialised data formats often have specific i/o functionality (microarray CEL files, XML, ...)
```r
> read.table("./Data/data.csv", sep = ",",
+       header = TRUE, row.names = 1)

    Ctrl1  Ctrl2  Case1  Case2
31340_at  4.837  4.057  5.037  5.217
31341_at  8.304  8.123  8.273  8.658
31342_at  7.123  7.406  7.051  6.778
31343_at  3.088  4.404  2.251  3.367
31344_at  5.926  4.988  6.422  6.074
31345_at  5.237  4.044  5.367  5.568
31346_at  5.154  5.266  5.990  5.804
31347_at  7.591  6.303  6.587  6.768
31348_at  4.640  1.633  3.754  3.805
31349_at  4.882  4.912  5.323  5.432
```
```r
> read.csv("./Data/data.csv", row.names = 1)

<table>
<thead>
<tr>
<th></th>
<th>Ctrl1</th>
<th>Ctrl2</th>
<th>Case1</th>
<th>Case2</th>
</tr>
</thead>
<tbody>
<tr>
<td>31340_at</td>
<td>4.837</td>
<td>4.057</td>
<td>5.037</td>
<td>5.217</td>
</tr>
<tr>
<td>31341_at</td>
<td>8.304</td>
<td>8.123</td>
<td>8.273</td>
<td>8.658</td>
</tr>
<tr>
<td>31342_at</td>
<td>7.123</td>
<td>7.406</td>
<td>7.051</td>
<td>6.778</td>
</tr>
<tr>
<td>31343_at</td>
<td>3.088</td>
<td>4.404</td>
<td>2.251</td>
<td>3.367</td>
</tr>
<tr>
<td>31344_at</td>
<td>5.926</td>
<td>4.988</td>
<td>6.422</td>
<td>6.074</td>
</tr>
<tr>
<td>31345_at</td>
<td>5.237</td>
<td>4.044</td>
<td>5.367</td>
<td>5.568</td>
</tr>
<tr>
<td>31346_at</td>
<td>5.154</td>
<td>5.266</td>
<td>5.990</td>
<td>5.804</td>
</tr>
<tr>
<td>31347_at</td>
<td>7.591</td>
<td>6.303</td>
<td>6.587</td>
<td>6.768</td>
</tr>
<tr>
<td>31348_at</td>
<td>4.640</td>
<td>1.633</td>
<td>3.754</td>
<td>3.805</td>
</tr>
<tr>
<td>31349_at</td>
<td>4.882</td>
<td>4.912</td>
<td>5.323</td>
<td>5.432</td>
</tr>
</tbody>
</table>
```
```r
> x <- read.csv("./Data/data.csv", row.names = 1)
> save(x, file = "/Data/data.rda")
> rm(x)
> load("./Data/data.rda")
> x[1:3, ]

<table>
<thead>
<tr>
<th></th>
<th>Ctrl1</th>
<th>Ctrl2</th>
<th>Case1</th>
<th>Case2</th>
</tr>
</thead>
<tbody>
<tr>
<td>31340_at</td>
<td>4.837</td>
<td>4.057</td>
<td>5.037</td>
<td>5.217</td>
</tr>
<tr>
<td>31341_at</td>
<td>8.304</td>
<td>8.123</td>
<td>8.273</td>
<td>8.658</td>
</tr>
<tr>
<td>31342_at</td>
<td>7.123</td>
<td>7.406</td>
<td>7.051</td>
<td>6.778</td>
</tr>
</tbody>
</table>
```
String manipulation (1)

> `paste("abc", "def", sep = "-")`

[1] "abc-def"

> `paste0("abc", "def")`

[1] "abcdef"
String manipulation (2)

> month.name[1:4]

[1] "January" "February" "March" "April"

> grep("Feb", month.name)

[1] 2

> grep("Feb", month.name, value = TRUE)

[1] "February"

> grepl("Feb", month.name)

[1] FALSE TRUE FALSE FALSE
String manipulation (3)

> month.name[1]

[1] "January"

> length(month.name[1])

[1] 1

> nchar(month.name[1])

[1] 7
String manipulation (4)

> strsplit("abc-def", ",-")

[[1]]
[1] "abc" "def"
Comparing and matching (1)

```r
> set.seed(1)
> x <- sample(letters[1:10], 6)
> y <- sample(letters[1:10], 6)
> x
[1] "c" "d" "e" "g" "b" "h"
> y
[1] "j" "f" "i" "a" "b" "g"
```
Comparing and matching (2)

> `intersect(x, y)`

[1] "g" "b"

> `setdiff(x, y)`

[1] "c" "d" "e" "h"

> `union(x, y)`

[1] "c" "d" "e" "g" "b" "h" "j" "f" "i" "a"
Comparing and matching (3)

> x %in% y

[1] FALSE FALSE FALSE TRUE TRUE FALSE

> x == y

[1] FALSE FALSE FALSE FALSE TRUE FALSE

> match(x, y)

[1] NA NA NA 6 5 NA
Generating data (1)

> seq(1,7,3)

[1] 1 4 7

> rep(1:2, 2)

[1] 1 2 1 2

> rep(1:2, each = 2)

[1] 1 1 2 2
Generating data (2)

> runif(5)

[1] 0.6870228 0.3841037 0.7698414 0.4976992 0.7176185

> rnorm(5)

[1] 2.4046534 0.7635935 -0.7990092 -1.1476570 -0.2894616
About the data

> table(sample(letters, 100, replace = TRUE))

a b c d e f g h i j k l m n o p q r s t u v w x y z
2 2 4 4 2 2 4 2 6 4 5 7 9 3 1 3 5 3 5 5 6 4 5 2 2 3

> summary(rnorm(100))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.680000 -0.827700 -0.008126 -0.008863 0.608900 2.659000

> head(x)

[1] "c" "d" "e" "g" "b" "h"

> tail(x)

[1] "c" "d" "e" "g" "b" "h"
\begin{verbatim}
> M <- matrix(rnorm(1000), ncol=4)
> head(M)

[1,] 0.7795840 -0.3398806 -1.44688974 -0.1657650
[2,] 0.7132405 0.6062646 1.01951283 0.5571036
[3,] 0.5428819 1.3411303 1.17854698 0.4443344
[4,] 0.8857784 0.7672873 -0.01025877 0.9013571
[5,] 0.3485947 0.1937257 0.26862487 -0.2220350
[6,] 1.0080546 1.1405667 1.34202887 0.1061913
\end{verbatim}
Plan

Introduction

Data types and structures
- Basic data types
- Higher order objects

Manipulating data
- Subsetting

Useful functions

Plotting

Programming

Packages
- Scatterplots with `plot`
- Boxplots with `boxplot`
- Barplots with `barplot`
- Histograms with `hist`
- `smoothScatter`
> plot(exprs(sample.ExpressionSet[, 1]),
+ exprs(sample.ExpressionSet[, 2]),
+ log = "xy",
+ xlab = sampleNames(sample.ExpressionSet)[1],
+ ylab = sampleNames(sample.ExpressionSet)[2])
> abline(0, 1)
> grid()
To create subplots, one can use `par(mfrow = c(2,2))`, `layout`, or (for scatterplots)

```r
> pairs(log2(exprs(sample.ExpressionSet)[, 1:4]),
+       pch = 19,
+       col = "#0000FF20")
```
> boxplot(log2(exprs(sample.ExpressionSet)))
> smoothScatter(log2(exprs(sample.ExpressionSet)[, 1:2]))
Plan

Introduction

Data types and structures
 Basic data types
 Higher order objects

Manipulating data
 Subsetting

Useful functions

Plotting

Programming

Packages
Flow control

> for (var in seq) expr
> while (cond) expr
> repeat expr
> break
> for (i in 1:4) { ## bad
+ print(i^2)
+ }

[1] 1
[1] 4
[1] 9
[1] 16

> (1:4)^2 ## good

[1] 1 4 9 16
The **apply family and friends**

- Applies a function to each element of an input, being a list or a vector (**sapply**, **lapply**), a matrix or a data frame (**apply**) or an environment (**eapply**).

- Same functionality than an explicit **for** loop, but often more elegant, function-centric, **not** faster.
> M <- matrix(1:9, ncol = 3)
> M

```
[,1] [,2] [,3]
[1,] 1  4  7
[2,] 2  5  8
[3,] 3  6  9
```

> apply(M, 1, max)

```
[1] 7 8 9
```

> apply(M, 2, max)

```
[1] 3 6 9
```

> 2

```
[1] 2
```
> sapply(month.name[1:2], paste0, "_2012")

 January February
"January_2012" "February_2012"

> lapply(month.name[1:2], paste0, "_2012")

[[1]]
[1] "January_2012"

[[2]]
[1] "February_2012"
> mean(rnorm(100))

[1] -0.003273181

> replicate(3, mean(rnorm(100)))

[1] -0.01014122 -0.05703239 -0.10293522

> replicate(2, rnorm(3))

 [,1] [,2] [,3]
[1,] -0.008159868 -0.497469678 2.477377478
[2,] 2.477377478 -0.051477033 0.645612638
[3,] 0.645612638 1.317917267 1.317917274
Conditionals

> if (cond) expr1 else expr2
> ifelse(cond, expr1, expr2)
> switch
```r
> x <- 2
> if (x > 0) { ## bad
+   log2(x)
+ } else {
+   log2(-x)
+ }

[1] 1

> log2(abs(x)) ## better

[1] 1
```
Exception handling

`try(exprs)` will either return the value of the expression expr, or an object of class `try-error`.

`tryCatch` provides a more configurable mechanism for condition handling and error recovery.
Writing functions

> myFun <- function(param1, param2, ...) {
+ ## function body
+ ## acting on copies of the params
+ ans <- param1 + param2
+ return(ans)
+ }
Function facts

- Single return value.
- To return multiple items, use a list or a proper object (see OO programming).
- The return value is either the last statement, or explicit return using return (can be called from any where in a function)
Function facts (cont.)

- Functions act on a pass-by-copy semantic.

```r
> x <- 1
> f <- function(x) { x <- x + 10; x }
> f(x)
[1] 11
> x
[1] 1
```
Function facts (cont.)

- Functions live/act in their own environment and have access to *global* variables.

```r
> x <- 1
> f <- function() { x <- x + 10; x }
> f()
[1] 11
> x
[1] 1
```
Anonymous function

> M <- matrix(rnorm(50), ncol = 5)
> M[sample(50, 10)] <- NA
> sum(is.na(M))

[1] 10

> apply(M, 1, function(x) sum(is.na(x)))

[1] 0 3 1 1 1 0 1 0 1 2

> apply(M, 2, function(x) sum(is.na(x)))

[1] 3 1 3 2 1
Plan

Introduction

Data types and structures
 Basic data types
 Higher order objects

Manipulating data
 Subsetting

Useful functions

Plotting

Programming

Packages
Primary mechanism to distribute R software is via packages.

Packages are installed in libraries (directories) on your hard disk, and they are loaded with the library function.

There are software, data and annotation packages.

The Comprehensive R Archive Network (CRAN) is the main package repository. It provides an automatic build framework for package authors.

The Bioconductor project manages its own CRAN-style repository.

R-forge – https://r-forge.r-project.org/
Package installation

- From within R, using `install.packages` - takes care of dependencies.
- Update all installed packages with `update.packages`.
- For Bioconductor packages, use `biocLite`:
  ```r
  > source("http://www.bioconductor.org/biocLite.R")
  > ## or, if you have already done so in the past
  > library("BiocInstaller")
  > biocLite("packageName")
  ```
Getting information about packages

- CRAN/Bioconductor/R-forge web pages
- Documentation
 > `help(package = "Biobase")`
- Vignettes (mandatory for Bioconductor packages)
 > `vignette(package = "Biobase")`
 > `vignette("Bioconductor", package = "Biobase")`
- Demos
 > `demo("lattice", package = "lattice")`
> packageDescription("Biobase")

Package: Biobase
Title: Biobase: Base functions for Bioconductor
Version: 2.17.6
Author: R. Gentleman, V. Carey, M. Morgan, S. Falcon
Description: Functions that are needed by many other packages or which replace R functions.
Suggests: tools, tkWidgets, ALL
Depends: R (>= 2.10), utils, BiocGenerics (>= 0.1.0)
Imports: methods, BiocGenerics
Maintainer: Bioconductor Package Maintainer
 <maintainer@bioconductor.org>
License: Artistic-2.0
 AllGenerics.R
LazyLoad: yes
biocViews: Infrastructure, Bioinformatics
Packaged: 2012-06-12 00:54:21 UTC; biocbuild
Built: R 2.16.0; x86_64-unknown-linux-gnu; 2012-06-12 18:03:44 UTC; unix

-- File: /home/lgatto/R/x86_64-unknown-linux-gnu-library/2.16/Biobase/Meta/package.rds
Package versions

- New Bioconductor releases appear twice a year. Bioconductor versions are tied to R versions.
- Stable packages versions are $x.y.z$ where $x \geq 1$ and y is even
- Devel packages have z odd.
- New (devel) packages have $0.y.z$ (y odd); if $y = 99$, then the package will become $1.0.0$ in the next release.
Bioconductor 636 reviewed packages
CRAN 3889 packages
R-forge 1313 projects

(19th June 2012)
Finding packages

- CRAN Task Views – http://cran.r-project.org/web/views/.
- sos to search inside contributed R packages.
References

- W. N. Venables, D. M. Smith and the R Development Core Team, An Introduction to R (get it with \texttt{help.start()})
> toLatex(sessionInfo())

- R Under development (unstable) (2012-06-21 r59599), x86_64-unknown-linux-gnu
- Locale: LC_CTYPE=en_GB.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB.UTF-8, LC_COLLATE=en_GB.UTF-8, LC_MONETARY=en_GB.UTF-8, LC_MESSAGES=en_GB.UTF-8, LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_GB.UTF-8, LC_IDENTIFICATION=C
- Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils
- Other packages: Biobase 2.17.6, BiocGenerics 0.3.0, cacheSweave 0.6-1, codetools 0.2-8, filehash 2.2-1, formatR 0.5, highlight 0.3.2, parser 0.0-15, pgfSweave 1.3.0, Rcpp 0.9.12, stashR 0.3-5
- Loaded via a namespace (and not attached): digest 0.5.2, tikzDevice 0.6.2
Thank you for your attention