An Introduction to R and Bioconductor

Robert Gentleman

© Copyright 2012, all rights reserved
The R Language

• R is a fully functional programming language and analysis environment for scientific computing
• it contains an essentially complete set of routines for numerical computations, statistical analysis and has extensive graphics capabilities
• computations/algorithms are organized by packages (there are over 3000) and these can easily be downloaded and installed on your computer
• users can create and share their own packages
 – two main repositories are CRAN and Bioconductor
 – packages will contain source code, documentation etc
R Language

- R has a new release once per year with patch releases somewhat more often
 - you should keep your local versions of R and Bioconductor up to date

- you should always use `biocLite` in the `biocInstaller` package for Bioconductor packages and `install.packages`, or `update.packages` for R
 - this will ensure you have compatible versions of software

- packages contain source code, documentation
 - man pages with examples
 - vignettes: self-contained runnable documents that describe how the code in the package can be used on an analysis problem
Bioconductor

Bioconductor is an open source and open development software project for the analysis of biomedical and genomic data.

The project was started in the Fall of 2001 and includes developers in many countries.

R and the R package system are used to design and distribute software.

A goal of the project is to develop integrated and interoperable software modules to provide comprehensive software solutions to relevant problems.

We largely achieve that goal by using common data structures.
Why are we Open Source

• so that you can find out what algorithm is being used, and how it is being used
• so that you can modify these algorithms to try out new ideas or to accommodate local conditions or needs
• so you can read the code, find bugs, suggest improvements etc.
• so that they can be used as components (potentially modified) in other peoples software
Overview

• biology is a computational science
• problems of data analysis, data generation, reproducibility require computational support and computational solutions
• we value code reuse
 – many of the tasks have already been solved
 – if we use those solutions we can put effort into new research
• well designed, self-describing data structures help us deal with complex data
Goals

• Provide access to powerful statistical and graphical methods for the analysis of genomic data.

• Facilitate the integration of biological metadata (GenBank, GO, Entrez Gene, PubMed) in the analysis of experimental data.

• Allow the rapid development of extensible, interoperable, and scalable software.

• Promote high-quality documentation and reproducible research.

• Provide training in computational and statistical methods.
Bioconductor packages
Release 2.10, 554 Software Packages!

- General infrastructure
 Biobase, Biostrings, biocViews
- Annotation:
 annotate, annaffy, biomaRt, AnnotationDbi \(\rightarrow\) data packages.
- Graphics/GUIs:
 geneplotter, hexbin, limmaGUI, exploRase
- Pre-processing:
 affy, affycomp, oligo, makecdfenv, vsn, gcrm, limma
- Differential gene expression:
 genefilter, limma, ROC, siggenes, EBArrays, factDesign
- GSEA/Hypergeometric Testing
 GSEABase, Category, GOstats, topGO
- Graphs and networks:
 graph, RBGL, Rgraphviz
- Flow Cytometry:
 flowCore, flowViz, flowUtils
- Protein Interactions:
 ppiData, ppiStats, ScISI, Rintact
- Sequence Data:
 Biostrings, ShortRead, rtracklayer, IRanges, GenomicFeatures, VariantAnnotation
- Other data:
Component software

• most interesting problems will require the coordinated application of many different techniques
• thus we need integrated interoperable software
• of primary importance is well designed and shared data structures
• you should design your contributions to be a cog in a big machine
Data complexity

- Dimensionality.
- Dynamic/evolving data: e.g., gene annotation, sequence, literature.
- Multiple data sources and locations: in-house, WWW.
- Multiple data types: numeric, textual, graphical.

No longer X_{nxp}!

We distinguish between biological metadata and experimental metadata.
Experimental metadata

- when were the samples processed and how
- what arrays were used/what kits
- if size selection of some sort (e.g., fractionation for proteomics experiments) was used
- date the samples were run
- lane or chip information
- treatments
Biological metadata

• Biological attributes that can be applied to the experimental data.
• E.g. for genes
 – chromosomal location;
 – gene annotation (Entrez Gene, GO);
 – gene models
 – relevant literature (PubMed)
• Biological metadata sets are large, evolving rapidly, and typically distributed via the WWW.
• **Tools:** annotate, biomaRt, and AnnotationDbi, GenomicFeatures packages, and annotation data packages.
Metadata package hgu95av2 mappings between different gene IDs for this chip.

- GENENAME: zinc finger protein 261
- ENTREZID: 9203
- ACCNUM: X95808
- AffyID: 41046_s_at
- MAP: Xq13.1
- SYMBOL: ZNF261
- PMID: 10486218, 9205841, 8817323
- GO: GO:0003677, GO:0007275, GO:0016021, + many other mappings

- Assemble and process genomic annotation data from public repositories.
- Build annotation data packages.
- Associate experimental data in real time to biological metadata from web databases such as GenBank, GO, KEGG, Entrez Gene, and PubMed.
- Process and store query results: e.g., search PubMed abstracts.
- Generate HTML reports of analyses.
Sequence Annotation

• for a given gene:
 – gene models
 – sequence
 – exon/intron boundaries
 – location
 – conservation
• often in the form of tracks
• it is important to keep track of the reference genome being used
Vignettes

• Bioconductor developed a new documentation paradigm, the vignette.
• A vignette is an executable document consisting of a collection of documentation text and code chunks.
• Vignettes form dynamic, integrated, and reproducible statistical documents that can be automatically updated if either data or analyses are changed.
• Vignettes can be generated using the Sweave function from the R tools package.
Short Courses/Conferences

• we have given many short courses
 – see bioconductor.org for more details on upcoming courses

• BioC2012 - Seattle, July 24-25
• European Developers’ workshop
 – Zurich, 13-14 December, 2012
Bioconductor Software

• concentrate development resources on a few important aspects
• **Biobase**: core classes and definitions that allow for succinct description and handling of the data
• **annotate**: generic functions for annotation that can be specialized
• **genefilter/limma/DESeq/DEXSeq**: differential expression
• **ShortRead/IRanges/GenomicFeatures/Variant Annotation**: string manipulations, sequence analysis
Quality Assessment

• ensuring that the data are of sufficient quality is an essential first step

• **arrayQuality Metrics**: comprehensive QA assessment of microarrays (one color or two color)
 – modifications are coming to make it more suitable for sequence data

• **ShortRead**: tools for QA of short reads, primarily Illumina
Biobase:ExpressionSet

- software should help organize and manipulate your data
- the data need to be assembled correctly once, and then they can be processed, subset etc without worrying about them
- we developed the ExpressionSet class
- SummarizedExperiment class is the next iteration in this process (in the GenomicRanges package)
Microarray data analysis

Pre-processing

- CEL, CDF
 - affy
 - vsn

ExpressionSet

. gpr, .Spot

- marray
 - limma
 - vsn

Differential expression

- edd
genefilter
limma
multtest
ROC
+ CRAN

Graphs & networks

- graph
RBGL
Rgraphviz

Cluster analysis

- CRAN
class
cluster
MASS
mva

Prediction

- CRAN
class
e1071
ipred
LogitBoost
MASS
nnet
randomForest
rpart

Annotation

- annotate
annaffy
biomaRt
+ metadata
packages

Graphics

geneplotter
hexbin
+ CRAN
Differential Expression

- **limma**: provides a linear models interface for DE
 - uses a moderated variance
 - a variety of p-value correction methods are provided
- **DESeq and edgeR**: for sequence data
 - similar approach to limma
 - make use of count data (Neg Binomial)
- **DEXSeq** for exon level differential expression
Machine Learning

- In R software for machine learning has been written by many different people
 - the calling sequences and return values are unique to each method

- **MLInterfaces**

- provides uniform calling sequences and return values for all machine learning algorithms

- **MLearn** is the main wrapper function
 - methods, eg knni, are passed to the wrapper

- return values are of class **MLOutput**

- see the **MLInterfaces** vignette for more details
Publications

• Bioconductor Case Studies, Springer

• R Programming for Bioinformatics, Chapman Hall
References

• **R** [www.r-project.org, cran.r-project.org]
 − software (CRAN);
 − documentation;
 − newsletter: R News;
 − mailing list.

• **Bioconductor** [www.bioconductor.org]
 − software, data, and documentation (vignettes);
 − training materials from short courses;
 − mailing list (please read the posting guide)