Gene Set Enrichment

Martin Morgan¹ Fred Hutchinson Cancer Research Center Seattle, WA

21 November 2013

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

¹mtmorgan@fhcrc.org

Objective

Is expression of genes in a gene set associated with experimental condition?

E.g., Are there unusually many up-regulated genes in the gene set?

Many methods, a recent review is Kharti et al., 2012.

- Over-representation analysis (ORA) are differentially expressed (DE) genes in the set more common than expected?
- Functional class scoring (FCS) summarize statistic of DE of genes in a set, and compare to null

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 Pathaway topology (PT) – include pathway knowledge in assessing DE of genes in a set

What is a gene set?

Any *a priori* classification of 'genes' into biologically relevant groups

- Members of same biochemical pathway
- Proteins expressed in identical cellular compartments

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Co-expressed under certain conditions
- Targets of the same regulatory elements
- On the same cytogenic band

► . . .

Sets do not need to be...

- exhaustive
- disjoint

Collections of gene sets

Gene Ontology (GO) Annotation (GOA)

- CC Cellular Components
- BP Biological Processes
- MF Molecular Function
- Pathways
 - MSigDb
 - KEGG (no longer freely available)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- reactome
- PantherDB
- ▶ ...

Collections of gene sets

E.g., MSigDb

- c1 Positional gene sets chromosome & cytogenic band
- c2 Curated Gene Sets from online pathway databases, publications in PubMed, and knowledge of domain experts.
- c3 motif gene sets based on conserved cis-regulatory motifs from a comparative analysis of the human, mouse, rat, and dog genomes.
- c4 computational gene sets defined by mining large collections of cancer-oriented microarray data.
- c5 GO gene sets consist of genes annotated by the same GO terms.
- c6 oncogenic signatures defined directly from microarray gene expression data from cancer gene perturbations.
- c7 immunologic signatures defined directly from microarray gene expression data from immunologic studies.

Work flow

- 1. Experimental design
- 2. Sequencing, quality assessment, alignment
- 3. Differential expression
- 4. Independent Filtering

and then...

5. Perform gene set enrichment analysis

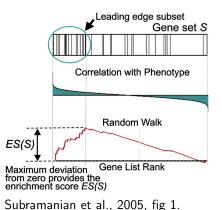
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

6. Adjust for multiple comparisons

Approach 1: hypergeometric tests

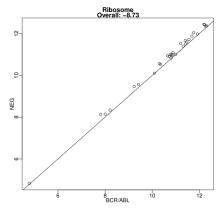
- Classify each gene as 'differentially expressed' DE or not, e.g., based on p < 0.05
- 2. Are DE genes in the set more common than DE genes not in the set?
- 3. Fisher hypergeometric test, *GOstats*
- Conditional hypergeometric to accommodate GO DAG, GOstats
- But: artificial division into two groups

In gene set?	
Yes	No
k	K
n-k	N-K
	Yes k


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

fisher.test()

Approach 2: enrichment score


Mootha et al., 2003; modified Subramanian et al., 2005.

- 1. Sort genes by log fold change
- 2. Calculate running sum: incremented when gene in set, decremented when not.
- Maximum of the running sum is enrichment score ES; large ES means that genes in set are toward top of list.
- 4. Permuting subject labels for significance

Approach 3: category *t*-test

- E.g., Jiang & Gentleman, 2007; *Category*
 - 1. Summarize *t* (or other) statistic in each set
 - 2. Test for significance by permuting the subject labels
 - 3. Much more straight-forward to implement package

Expression in NEG vs BCR/ABL samples for genes in the 'ribosome' KEGG pathway; *Category* vignette.

Competitive versus self-contained null hypothesis

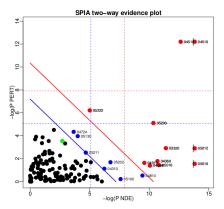
Goemann & Bühlmann, 2007

- Competitive null: The genes in the gene set do not have stronger association with the subject condition than other genes. (Approach 1, 2)
- Self-contained null: The genes in the gene set do not have any association with the subject condition. (Approach 3)
- Probably, self-contained null is closer to actual question of interest

Permuting subjects (rather than genes) is appropriate

Approach 4: linear models

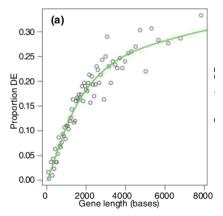
E.g., Hummel et al., 2008, GlobalAncova


- Colorectal tumors have good ('stage II') or bad ('stage III') prognosis. Do genes in the p53 pathway (*just one gene set*!) show different activity at the two stages?
- Linear model incorporates covariates sex of patient, location of tumor

limma

- Majewski et al., 2010 romer and Wu & Smythe 2012 camera for enrichment (competitive null) linear models
- Wu et al., 2010: roast, mroast for self-contained null linear models

Approach 5: pathway topology


- Incorporate pathway topology (e.g., interactions between gene products) into significance testing
- E.g., Tarca et al., 2009, SPIA
 - Signaling Pathway Impact Analysis
 - Combined evidence: pathway over-representation P_{NDE}; unusual signaling P_{PERT} (equation 1 of Tarca et al.)

Evidence plot, colorectal cancer. Points: pathway gene sets. Significant after Bonferroni (red) or FDR (blue) correction.

Approach 6: issues with sequence data?

- All else being equal, long genes receive more reads than short genes
- Per-gene P values proportional to gene size
- E.g., Young et al., 2010, goseq
 - Hypergeometric, weighted by gene size
 - Substantial differences
 - Better: read depth??

DE genes vs. transcript length. Points: bins of 300 genes. Line: fitted probability weighting function.

Conclusions

Gene set enrichment classifications

- Kharti et al: Over-representation analysis; functional class scoring; pathway topology
- ► Goemann & Bühlmann: Competitive vs. self-contained null

Selected <i>Bioconduct</i> Approach	or Packages Packages
	<u> </u>
Hypergeometric	GOstats, topGO
Enrichment	<i>limma</i> ::romer
Category <i>t</i> -test	Category
Linear model	GlobalAncova, GSEAlm, limma::roast
Pathway topology	SPIA
Sequence-specific	goseq

References

- ► Khatri et al., 2012, PLoS Comp Biol 8.2: e1002375.
- Subramanian et al., 2005, PNAS 102.43: 15545-15550.
- ▶ Jiang & Gentleman, 2007, Bioinformatics Feb 1;23(3):306-13.
- ► Goeman & Bühlmann, 2007, Bioinformatics 23.8: 980-987.
- Hummel, Meister, & Mansmann, 2008, Bioinformatics 24.1: 78-85.
- Wu & Smyth 2012, Nucleic Acids Research 40, e133.
- ▶ Wu et al., 2010 Bioinformatics 26, 2176-2182.
- Majewski et al., 2010, Blood, published online 5 May 2010.
- ► Tarca et al., 2009, Bioinformatics 25.1: 75-82.
- ▶ Young et al., 2010, Genome Biology 11:R14.

Partly based on a presentation by Simon Anders, CSAMA 2010².

²http://marray.economia.unimi.it/2009/material/lectures/L8_ Gene_Set_Testing.pdf