
Ranges (and Data Integration)

Martin Morgan1

Fred Hutchinson Cancer Research Center
Seattle, WA

20 November 2013

1mtmorgan@fhcrc.org

mailto:mtmorgan@fhcrc.org

Introduction

Importance of range concepts: conceptually. . .

I Genomic data and annotation can be represented by ranges

I Biological questions reflect range-based queries

Examples

I How many reads overlap each gene?

I How many reads span splice junctions?

I Where do regulatory elements bind in ChIP-seq experiments?

I Which regulatory elements are closest to differentially
expressed genes?

I What sequences are common under discovered regulatory
marks?

Key reference

Lawrence et al., 2013, Software for Computing and Annotating
Genomic Ranges. PLoS Comput Biol 9(8): e10031182

I Initial developers: Michael Lawrence, Hervé Pagès, Patrick
Aboyoun

2http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%

2Fjournal.pcbi.1003118

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003118
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003118

Outline

Ranges
IRanges
GRanges
Other Idioms

Data Integration

Conclusions

Ranges

What is a range?

I ‘start’ and ‘end’ coordinate vectors

I Closed interval (i.e., include end points)

I Zero-width convention

I Can be ‘named’

> library(IRanges)

> eg <- IRanges(start= c(1, 10, 20),

+ end = c(4, 10, 19),

+ names= c("A", "B", "C"))

> ## bigger

> start <- floor(runif(10000, 1, 1000))

> end <- start + floor(runif(10000, 0, 100))

> ir <- IRanges(start, end)

‘Accessors’ and simple manipulation

Accessors

I start, end, width, names

‘Vector’-like behavior

I length, [

> length(ir)

> ir[1:4]

> start(ir[1:4])

> ir[width(ir) > 10 & width(ir) < 20]

Operations

1. Intra-range: operate on each range independently, e.g., shift

2. Inter-range: operate on several ranges of a single instance,
e.g., reduce, coverage

3. Between-range: operate on two instances, e.g., findOverlaps

See table in afternoon lab!

> ir <- IRanges(start=c(7, 9, 12, 14, 22:24),

+ end=c(15, 11, 12, 18, 26, 27, 28))

> shift(ir)

> rir <- reduce(ir)

> findOverlaps(ir, rir)

IRangesList

I Often useful to group IRanges into a list, with each element
of the list containing 0 or more IRanges instances

I Operations usually work on list element

> irl <- split(ir, width(ir))

> reduce(irl)

GRanges

Builds on IRanges, IRangesList. . .

I ‘seqnames’ (e.g., chromosome) and ‘strand’

I (optional) ‘seqlengths’ for genome information

I (optional) ‘mcols’ for ‘metadata’ data frame on each range

> library(GenomicRanges)

> genes <- GRanges(seqnames=c("chr3R", "chrX"),

+ ranges=IRanges(

+ start=c(19967117, 18962306),

+ end =c(19973212, 18962925),

+ names=c("FBgn0039155", "FBgn0085359")),

+ strand=c("+", "-"),

+ seqlengths=c(chr3R=27905053L, chrX=22422827L))

> mcols(genes) <-

+ DataFrame(EntrezId=c("42865", "2768869"),

+ Symbol=c("kal-1", "CG34330"))

Coordinates and accessors

Genome coordinates

I 1-based

I ‘left-most’ – ‘start’ of ranges on the minus strand are the
left-most coordinate, rather than the 5’ coordinate.

Accessors

I seqnames, strand, seqlengths, seqlevels and like IRanges:
start, end, width, names

I mcols; $ for direct access to metadata

> width(genes)

> genes$Symbol

Operations

I Like IRanges, but generally seqnames- and strand-aware

I E.g., flank identifies upstream (5’) region

I E.g., findOverlaps checks seqnames and strand

> flank(genes, 1000) ## 5' flanking range

*List classes

I Often useful to have a list, where all elements of the list are
restricted to be of the same type – like IRangesList

I Support for common ‘atomic’ types (LogicalList, IntegerList,
NumericList, CharacterList, . . .) in addition to IRangesList,
GRangesList, . . .

I Operations on list elements usually vectorized across elements

> rl <- splitAsList(1:5, c("A", "B", "A", "B", "B"))

> elementLengths(rl)

> log(rl)

Coverage and run-length encoding

I ‘Coverage’ as the number of ranges (or genomic ranges)
overlapping positions on the positive integer number line.

I Could be represented as an integer vector, but often coverage
is sparse

I Represent as a run-length encoding – 6 0’s followed by 2 1’s,
followed by 4 2’s, etc.

I Specialized functions, e.g., slice

I Fast and efficient for many genomic operations

> cvg <- coverage(ir)

> runLength(cvg)

> runValue(cvg)

> log(cvg)

> as.numeric(log(cvg))

> slice(cvg, lower=2)

Outline

Ranges
IRanges
GRanges
Other Idioms

Data Integration

Conclusions

Advantages of integrated data containers

We could separately define a features×samples matrix of
expression values, a data.frame describing samples, and a GRanges
object describing the ranges of interest, but. . .

I Difficult and error prone to manipulate, e.g., subset, in a
coordinated fashion.

I Different pacakges might follow different conventions for
representing data, e.g., samples×features representation of
expression values.

Instead. . .

I Create a class that integrates different data types

I Re-use established classes as much as possible

SummarizedExperiment

I assays: feature×sample matricies

I colData: DataFrame of sample attributes

I rowData: GRanges / GRangesList of features

I Coordination between assays, colData and rowData

> library(GenomicRanges)

> ?SummarizedExperiment

> example(SummarizedExperiment)

> sset

> dim(assays(sset)[[1]])

> colData(sset)

> rowData(sset)

SummarizedExperiment – manipulation

I Use $ to access colData

I Use range-based operations, e.g., %over% (does the left-hand
side overlap the right-hand side?) for row-based queries

> sset$Treatment

> sset[, sset$Treatment == "ChIP"]

> roi <- GRanges("chr1", IRanges(1, 249250621))

> sset[sset %over% roi,]

Outline

Ranges
IRanges
GRanges
Other Idioms

Data Integration

Conclusions

Conclusions

Ranges

I Suitable for many biological questions

I Very rich and flexible software

I Performs well for large genomic data

Flexible integrated data containers

I Less error-prone

I Convenient

I Interoperability between packages

	Ranges
	IRanges
	GRanges
	Other Idioms

	Data Integration
	Conclusions

